Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 42 Issue 5
Nov.  2020
Turn off MathJax
Article Contents
Su Wenliang,Zou Zhili,Zhang Qingmin. Equilibrium bottom profiles of different embayment configurations [J]. Haiyang Xuebao,2020, 42(5):128–138,doi:10.3969/j.issn.0253−4193.2020.05.012
Citation: Su Wenliang,Zou Zhili,Zhang Qingmin. Equilibrium bottom profiles of different embayment configurations [J]. Haiyang Xuebao,2020, 42(5):128–138,doi:10.3969/j.issn.0253−4193.2020.05.012

Equilibrium bottom profiles of different embayment configurations

doi: 10.3969/j.issn.0253-4193.2020.05.012
  • Received Date: 2017-05-12
  • Rev Recd Date: 2019-03-05
  • Available Online: 2020-11-18
  • Publish Date: 2020-05-25
  • Investigating the morphodynamic equilibrium of embayment is important to understand the evolution of coastal morphology. This study investigates the effect of embayment shape on equilibrium bottom profile of the embayment. Three typical embayments, rectangular, convergent and divergent types, are considered to examine their bottom equilibrium profiles analytically and numerically. The approximate analytic solutions for bottom equilibrium profile and mean sand concentration applicable to the three types of the embayments are established for the case of embayment’s length much smaller than tidal wave length. The two-dimensional depth-average model coupling hydrodynamics, sand transformation and bottom evolution is adopted to simulate the embayment equilibrium state of these three types of embayments, and the numerical result of surface elevation is then applied to determine the two parameters contained in the bottom analytic solution. The research results give the three different equilibrium bottom profiles: the plane slope for rectangular embayment; the downward convex form for convergent embayment and the upward concave form for divergent embayment. The good agreements between the theoretical and numerical results of tidal current, sand concentration and bottom profile are achieved.
  • loading
  • [1]
    Nichols M M. Sediment accumulation rates and relative sea-level rise in lagoons[J]. Marine Geology, 1989, 88(3/4): 201−219.
    [2]
    Stevenson J C, Ward L G, Kearney M S. Vertical accretion in marshes with varying rates of sea level rise[M]//Wolfe D A. Estuarine Variability. New York: Academic Press, 1986: 241−259.
    [3]
    Perillo G M E. Geomorphology and Sedimentology of Estuaries[M]. Amsterdam: Elsevier Science, 1995.
    [4]
    Schuttelaars H M, de Swart H E. Initial formation of channels and shoals in a short tidal embayment[J]. Journal of Fluid Mechanics, 1999, 386: 15−42. doi: 10.1017/S0022112099004395
    [5]
    Schuttelaars H M, de Swart H E. Multiple morphodynamic equilibria in tidal embayments[J]. Journal of Geophysical Research: Oceans, 2000, 105(C10): 24105−24118. doi: 10.1029/2000JC900110
    [6]
    Hibma A, Schuttelaars H M, Wang Zhengbing. Comparison of longitudinal equilibrium profiles of estuaries in idealized and process-based models[J]. Ocean Dynamics, 2003, 53(3): 252−269. doi: 10.1007/s10236-003-0046-7
    [7]
    Lanzoni S, Seminara G. Long-term evolution and morphodynamic equilibrium of tidal channels[J]. Journal of Geophysical Research: Oceans, 2002, 107(C1): 1−1−1−13.
    [8]
    Todeschini I, Toffolon M, Tubino M. Long-term morphological evolution of funnel-shape tide-dominated estuaries[J]. Journal of Geophysical Research: Oceans, 2008, 113(C5): C05005.
    [9]
    Meerman C, Rottschäfer V, Schuttelaars H. Influence of geometrical variations on morphodynamic equilibria in short tidal basins[J]. Ocean Dynamics, 2019, 69: 221–238.
    [10]
    Prandle D. Relationships between tidal dynamics and bathymetry in strongly convergent estuaries[J]. Journal of Physical Oceanography, 2003, 33(12): 2738−2750. doi: 10.1175/1520-0485(2003)033<2738:RBTDAB>2.0.CO;2
    [11]
    van Rijn L C. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas[M]. Amsterdam: Aqua Publications, 1993.
    [12]
    Liu Xudong, Osher S, Chan T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1): 200−212. doi: 10.1006/jcph.1994.1187
    [13]
    Roelvink J A. Coastal morphodynamic evolution techniques[J]. Coastal Engineering, 2006, 53(2/3): 277−287.
    [14]
    邹志利. 水波理论及其应用[M]. 北京: 科学出版社, 2005.

    Zou Zhili. Water Wave Theories and Their Applications[M]. Beijing: Science Press, 2005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article views (266) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return