Citation: | Niu Fan,Wang Tao,Liao Guanghong. Ocean available gravitational potential energy calculated through CMIP5 model outputs and Argo observations[J]. Haiyang Xuebao,2020, 42(5):65–76,doi:10.3969/j.issn.0253−4193.2020.05.007 |
[1] |
Taylor K E, Stouffer R J, Meehl G A. An overview of CMIP5 and the experiment design[J]. Bulletin of the American Meteorological Society, 2012, 93(4): 485−498. doi: 10.1175/BAMS-D-11-00094.1
|
[2] |
Moss R H, Edmonds J A, Hibbard K A, et al. The next generation of scenarios for climate change research and assessment[J]. Nature, 2010, 463(7282): 747−756. doi: 10.1038/nature08823
|
[3] |
Allen S K, Plattner G K, Nauels A, et al. Climate Change 2013: The Physical Science Basis. An Overview of the Working Group 1 Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC)[C]. Vienna, Austria: AGU, 2013.
|
[4] |
Smith T M, Reynolds R W. Improved extended reconstruction of SST (1854–1997)[J]. Journal of Climate, 2004, 17(12): 2466−2477. doi: 10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2
|
[5] |
Compo G P, Whitaker J S, Sardeshmukh P D, et al. The twentieth century reanalysis project[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(654): 1−28. doi: 10.1002/qj.776
|
[6] |
Carton J A, Giese B S. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA)[J]. Monthly Weather Review, 2008, 136(8): 2999−3017. doi: 10.1175/2007MWR1978.1
|
[7] |
Wang C Z, Zhang L P, Lee S K, et al. A global perspective on CMIP5 climate model biases[J]. Nature Climate Change, 2014, 4(3): 201−205. doi: 10.1038/nclimate2118
|
[8] |
Huang C J, Qiao F L, Dai D J. Evaluating CMIP5 simulations of mixed layer depth during summer[J]. Journal of Geophysical Research: Oceans, 2014, 119(4): 2568−2582. doi: 10.1002/2013JC009535
|
[9] |
Oort A H, Anderson L A, Peixoto J P. Estimates of the energy cycle of the oceans[J]. Journal of Geophysical Research: Oceans, 1994, 99(C4): 7665−7688. doi: 10.1029/93JC03556
|
[10] |
冯洋. 大洋有效位能及浮力通量对其作用机制研究[D]. 青岛: 中国海洋大学, 2006.
Feng Yang. The available potential energy in the world oceans and its sources/sinks from surface buoyancy flux[D]. Qingdao: Ocean University of China, 2006.
|
[11] |
Chen R, McClean J L, Gille S T, et al. Isopycnal eddy diffusivities and critical layers in the Kuroshio Extension from an eddying ocean model[J]. Journal of Physical Oceanography, 2014, 44(8): 2191−2211. doi: 10.1175/JPO-D-13-0258.1
|
[12] |
Bray N A, Fofonoff N P. Available potential energy for MODE eddies[J]. Journal of Physical Oceanography, 1981, 11(1): 30−47. doi: 10.1175/1520-0485(1981)011<0030:APEFME>2.0.CO;2
|
[13] |
Sandström J W, Helland-Hansen B. über die Berechnung von Meeresströmungen[J]. Norwegion Fisheries Invest, 1903, 2(4): 43.
|
[14] |
Huang R X. Mixing and available potential energy in a Boussinesq ocean[J]. Journal of Physical Oceanography, 1998, 28(4): 669−678. doi: 10.1175/1520-0485(1998)028<0669:MAAPEI>2.0.CO;2
|
[15] |
Oort A H, Ascher S C, Levitus S, et al. New estimates of the available potential energy in the world ocean[J]. Journal of Geophysical Research: Oceans, 1989, 94(C3): 3187−3200. doi: 10.1029/JC094iC03p03187
|
[16] |
Pedlosky J. Geophysical Fluid Dynamics[M]. New York: Springer Science & Business Media, 1979.
|
[17] |
Wright W R. Northern sources of energy for the deep Atlantic[J]. Deep Sea Research and Oceanographic Abstracts, 1972, 19(12): 865−877. doi: 10.1016/0011-7471(72)90004-6
|
[18] |
Lorenz E N. Available potential energy and the maintenance of the general circulation[J]. Tellus, 1955, 7(2): 157−167. doi: 10.3402/tellusa.v7i2.8796
|
[19] |
Nycander J. Horizontal convection with a non-linear equation of state: generalization of a theorem of Paparella and Young[J]. Tellus A: Dynamic Meteorology and Oceanography, 2010, 62(2): 134−137. doi: 10.1111/j.1600-0870.2009.00429.x
|
[20] |
Tailleux R. Available potential energy and exergy in stratified fluids[J]. Annual Review of Fluid Mechanics, 2013, 45(1): 35−58. doi: 10.1146/annurev-fluid-011212-140620
|
[21] |
Winters K B, Lombard P N, Riley J J, et al. Available potential energy and mixing in density-stratified fluids[J]. Journal of Fluid Mechanics, 1995, 289: 115−128. doi: 10.1017/S002211209500125X
|
[22] |
Huang R X. Available potential energy in the world's oceans[J]. Journal of Marine Research, 2005, 63(1): 141−158. doi: 10.1357/0022240053693770
|
[23] |
Tseng Y H, Ferziger J H. Mixing and available potential energy in stratified flows[J]. Physics of Fluids, 2001, 13(5): 1281−1293. doi: 10.1063/1.1358307
|
[24] |
Saenz J A, Tailleux R, Butler E D, et al. Estimating Lorenz’s reference state in an ocean with a nonlinear equation of state for seawater[J]. Journal of Physical Oceanography, 2015, 45(5): 1242−1257. doi: 10.1175/JPO-D-14-0105.1
|
[25] |
Feng Y, Wang W, Huang R X. Meso-scale available gravitational potential energy in the world oceans[J]. Acta Oceanologica Sinica, 2006, 25(5): 1−13.
|
[26] |
Chylek P, Li J, Dubey M K, et al. Observed and model simulated 20th century Arctic temperature variability: Canadian earth system model CanESM2[J]. Atmospheric Chemistry and Physics Discussions, 2011, 11(8): 22893−22907. doi: 10.5194/acpd-11-22893-2011
|
[27] |
Gordon H, O'Farrell S, Collier M, et al. The CSIRO Mk3.5 climate model[R]. Aspendale, Victoria, Australia: The Center for Australian Weather and Climate Research, 2010: 62.
|
[28] |
Griffies S M, Winton M, Donner L J, et al. The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations[J]. Journal of Climate, 2011, 24(13): 3520−3544. doi: 10.1175/2011JCLI3964.1
|
[29] |
Hallberg R. The ability of large-scale ocean models to accept parameterizations of boundary mixing, and a description of a refined bulk mixed-layer model[C]//Proceedings of the 2003‘Aha Huliko’a Hawaiian Winter Workshop. Honolulu, HI: University of Hawaii, 2003: 187-203.
|
[30] |
Dunne J P, John J G, Adcroft A J, et al. GFDL’s ESM2 global coupled climate-carbon earth system models. Part I: Physical formulation and baseline simulation characteristics[J]. Journal of Climate, 2012, 25(19): 6646−6665. doi: 10.1175/JCLI-D-11-00560.1
|
[31] |
Liu J P, Schmidt G A, Martinson D G, et al. Sensitivity of sea ice to physical parameterizations in the GISS global climate model[J]. Journal of Geophysical Research: Oceans, 2003, 108(C2): 3053.
|
[32] |
Peters H, Gregg M C, Toole J M. On the parameterization of equatorial turbulence[J]. Journal of Geophysical Research: Oceans, 1988, 93(C2): 1199−1218. doi: 10.1029/JC093iC02p01199
|
[33] |
Martin P J. Simulation of the mixed layer at OWS November and Papa with several models[J]. Journal of Geophysical Research: Oceans, 1985, 90(C1): 903−916. doi: 10.1029/JC090iC01p00903
|
[34] |
Johns T C, Durman C F, Banks H T, et al. The new Hadley Centre climate model (HadGEM1): evaluation of coupled simulations[J]. Journal of Climate, 2006, 19(7): 1327−1353. doi: 10.1175/JCLI3712.1
|
[35] |
Madec G, Pascale Delécluse, Imbard M, et al. OPA 8.1 ocean general circulation model reference manual[S]. Note Du Pole De Modélisation Institut Pierre Simon Laplace, 2007: 11.
|
[36] |
Dufresne J L, Foujols M A, Denvil S, et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5[J]. Climate Dynamics, 2013, 40(9/10): 2123−2165.
|
[37] |
Jungclaus J H, Fischer N, Haak H, et al. Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-earth system model[J]. Journal of Advances in Modeling Earth Systems, 2013, 5(2): 422−446. doi: 10.1002/jame.20023
|
[38] |
Large W G, McWilliams J C, Doney S C. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization[J]. Reviews of Geophysics, 1994, 32(4): 363−403. doi: 10.1029/94RG01872
|
[39] |
Kraus E B, Turner J S. A one-dimensional model of the seasonal thermocline II. The general theory and its consequences[J]. Tellus, 1967, 19(1): 98−106. doi: 10.3402/tellusa.v19i1.9753
|
[40] |
Fox-Kemper B, Danabasoglu G, Ferrari R, et al. Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations[J]. Ocean Modelling, 2011, 39(1/2): 61−78.
|
[41] |
Pacanowski R C, Philander S G H. Parameterization of vertical mixing in numerical models of tropical oceans[J]. Journal of Physical Oceanography, 1981, 11(11): 1443−1451.
|
[42] |
Wiin-Nielsen A, Chen T C. Fundamentals of Atmospheric Energetics[M]. Oxford: Oxford University Press, 1993.
|
[43] |
Dutton J A, Johnson D R. The theory of available potential energy and a variational approach to atmospheric energetics[J]. Advances in Geophysics, 1967, 12: 333−436. doi: 10.1016/S0065-2687(08)60379-9
|
[44] |
Kang D J, Fringer O. On the calculation of available potential energy in internal wave fields[J]. Journal of Physical Oceanography, 2010, 40(11): 2539−2545. doi: 10.1175/2010JPO4497.1
|
[45] |
Venayagamoorthy S K. Nonhydrostatic and nonlinear contributions to the energy flux budget in nonlinear internal waves[J]. Geophysical Research Letters, 2005, 32(15): L15603. doi: 10.1029/2005GL023432
|
[46] |
Moum J N, Klymak J M, Nash J D, et al. Energy transport by nonlinear internal waves[J]. Journal of Physical Oceanography, 2007, 37(7): 1968−1988. doi: 10.1175/JPO3094.1
|
[47] |
Klymak J M, Moum J N. Internal solitary waves of elevation advancing on a shoaling shelf[J]. Geophysical Research Letters, 2003, 30(20): 2045.
|
[48] |
Klymak J M, Pinkel R, Liu C T, et al. Prototypical solitons in the South China Sea[J]. Geophysical Research Letters, 2006, 33(11): L11607. doi: 10.1029/2006GL025932
|
[49] |
Wang T, Geyer W R. The balance of salinity variance in a partially stratified estuary: implications for exchange flow, mixing, and stratification[J]. Journal of Physical Oceanography, 2018, 48(12): 2887−2899. doi: 10.1175/JPO-D-18-0032.1
|
[50] |
Osborn T R, Cox C S. Oceanic fine structure[J]. Geophysical Fluid Dynamics, 1972, 3(4): 321−345. doi: 10.1080/03091927208236085
|
[51] |
Burchard H, Rennau H. Comparative quantification of physically and numerically induced mixing in ocean models[J]. Ocean Modelling, 2008, 20(3): 293−311. doi: 10.1016/j.ocemod.2007.10.003
|
[52] |
张宇, 林一骅, 王辉. 垂直湍流输送对大洋的重力位能和混合过程的影响[J]. 大气科学, 2014, 38(5): 838−844.
Zhang Yu, Lin Yihua, Wang Hui. Impact of vertical turbulence on ocean gravitational potential energy and the tracer mixing process[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(5): 838−844.
|