Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 42 Issue 5
Nov.  2020
Turn off MathJax
Article Contents
Niu Fan,Wang Tao,Liao Guanghong. Ocean available gravitational potential energy calculated through CMIP5 model outputs and Argo observations[J]. Haiyang Xuebao,2020, 42(5):65–76,doi:10.3969/j.issn.0253−4193.2020.05.007
Citation: Niu Fan,Wang Tao,Liao Guanghong. Ocean available gravitational potential energy calculated through CMIP5 model outputs and Argo observations[J]. Haiyang Xuebao,2020, 42(5):65–76,doi:10.3969/j.issn.0253−4193.2020.05.007

Ocean available gravitational potential energy calculated through CMIP5 model outputs and Argo observations

doi: 10.3969/j.issn.0253-4193.2020.05.007
  • Received Date: 2019-07-27
  • Rev Recd Date: 2020-01-08
  • Available Online: 2020-11-18
  • Publish Date: 2020-05-25
  • As the active part of gravitational potential energy (GPE), available gravitational potential energy (AGPE) can participate in ocean energy cycle. In this paper, we calculated the AGPE in the upper 2 000 m in the global ocean and the mesoscale AGPE within the depth range of 200−500 m from the outputs of 9 CMIP5 models. The results are compared with those calculated from BOA_Argo observational data. The results show that the basin scale AGPE calculated from model outputs are mostly larger than those obtained by Argo observations. In the areas with strong dynamic activities (especially the Kuroshio, gulf stream, the Antarctic Circumpolar Current), the AGPE calculated from model outputs show obvious difference from those obtained via the Argo observation, and the difference mainly comes from the density perturbation. The eddy kinetic energy (EKE) and the mesoscale AGPE have a remarkable temporal correlation in the Kuroshio and the Southern Ocean regions, but their correlation coefficient is low in the gulf stream region of North Atlantic. The power spectrum analysis shows that both the mesoscale AGPE and EKE have significant semi-annual and annual variablilities.
  • loading
  • [1]
    Taylor K E, Stouffer R J, Meehl G A. An overview of CMIP5 and the experiment design[J]. Bulletin of the American Meteorological Society, 2012, 93(4): 485−498. doi: 10.1175/BAMS-D-11-00094.1
    [2]
    Moss R H, Edmonds J A, Hibbard K A, et al. The next generation of scenarios for climate change research and assessment[J]. Nature, 2010, 463(7282): 747−756. doi: 10.1038/nature08823
    [3]
    Allen S K, Plattner G K, Nauels A, et al. Climate Change 2013: The Physical Science Basis. An Overview of the Working Group 1 Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC)[C]. Vienna, Austria: AGU, 2013.
    [4]
    Smith T M, Reynolds R W. Improved extended reconstruction of SST (1854–1997)[J]. Journal of Climate, 2004, 17(12): 2466−2477. doi: 10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2
    [5]
    Compo G P, Whitaker J S, Sardeshmukh P D, et al. The twentieth century reanalysis project[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(654): 1−28. doi: 10.1002/qj.776
    [6]
    Carton J A, Giese B S. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA)[J]. Monthly Weather Review, 2008, 136(8): 2999−3017. doi: 10.1175/2007MWR1978.1
    [7]
    Wang C Z, Zhang L P, Lee S K, et al. A global perspective on CMIP5 climate model biases[J]. Nature Climate Change, 2014, 4(3): 201−205. doi: 10.1038/nclimate2118
    [8]
    Huang C J, Qiao F L, Dai D J. Evaluating CMIP5 simulations of mixed layer depth during summer[J]. Journal of Geophysical Research: Oceans, 2014, 119(4): 2568−2582. doi: 10.1002/2013JC009535
    [9]
    Oort A H, Anderson L A, Peixoto J P. Estimates of the energy cycle of the oceans[J]. Journal of Geophysical Research: Oceans, 1994, 99(C4): 7665−7688. doi: 10.1029/93JC03556
    [10]
    冯洋. 大洋有效位能及浮力通量对其作用机制研究[D]. 青岛: 中国海洋大学, 2006.

    Feng Yang. The available potential energy in the world oceans and its sources/sinks from surface buoyancy flux[D]. Qingdao: Ocean University of China, 2006.
    [11]
    Chen R, McClean J L, Gille S T, et al. Isopycnal eddy diffusivities and critical layers in the Kuroshio Extension from an eddying ocean model[J]. Journal of Physical Oceanography, 2014, 44(8): 2191−2211. doi: 10.1175/JPO-D-13-0258.1
    [12]
    Bray N A, Fofonoff N P. Available potential energy for MODE eddies[J]. Journal of Physical Oceanography, 1981, 11(1): 30−47. doi: 10.1175/1520-0485(1981)011<0030:APEFME>2.0.CO;2
    [13]
    Sandström J W, Helland-Hansen B. über die Berechnung von Meeresströmungen[J]. Norwegion Fisheries Invest, 1903, 2(4): 43.
    [14]
    Huang R X. Mixing and available potential energy in a Boussinesq ocean[J]. Journal of Physical Oceanography, 1998, 28(4): 669−678. doi: 10.1175/1520-0485(1998)028<0669:MAAPEI>2.0.CO;2
    [15]
    Oort A H, Ascher S C, Levitus S, et al. New estimates of the available potential energy in the world ocean[J]. Journal of Geophysical Research: Oceans, 1989, 94(C3): 3187−3200. doi: 10.1029/JC094iC03p03187
    [16]
    Pedlosky J. Geophysical Fluid Dynamics[M]. New York: Springer Science & Business Media, 1979.
    [17]
    Wright W R. Northern sources of energy for the deep Atlantic[J]. Deep Sea Research and Oceanographic Abstracts, 1972, 19(12): 865−877. doi: 10.1016/0011-7471(72)90004-6
    [18]
    Lorenz E N. Available potential energy and the maintenance of the general circulation[J]. Tellus, 1955, 7(2): 157−167. doi: 10.3402/tellusa.v7i2.8796
    [19]
    Nycander J. Horizontal convection with a non-linear equation of state: generalization of a theorem of Paparella and Young[J]. Tellus A: Dynamic Meteorology and Oceanography, 2010, 62(2): 134−137. doi: 10.1111/j.1600-0870.2009.00429.x
    [20]
    Tailleux R. Available potential energy and exergy in stratified fluids[J]. Annual Review of Fluid Mechanics, 2013, 45(1): 35−58. doi: 10.1146/annurev-fluid-011212-140620
    [21]
    Winters K B, Lombard P N, Riley J J, et al. Available potential energy and mixing in density-stratified fluids[J]. Journal of Fluid Mechanics, 1995, 289: 115−128. doi: 10.1017/S002211209500125X
    [22]
    Huang R X. Available potential energy in the world's oceans[J]. Journal of Marine Research, 2005, 63(1): 141−158. doi: 10.1357/0022240053693770
    [23]
    Tseng Y H, Ferziger J H. Mixing and available potential energy in stratified flows[J]. Physics of Fluids, 2001, 13(5): 1281−1293. doi: 10.1063/1.1358307
    [24]
    Saenz J A, Tailleux R, Butler E D, et al. Estimating Lorenz’s reference state in an ocean with a nonlinear equation of state for seawater[J]. Journal of Physical Oceanography, 2015, 45(5): 1242−1257. doi: 10.1175/JPO-D-14-0105.1
    [25]
    Feng Y, Wang W, Huang R X. Meso-scale available gravitational potential energy in the world oceans[J]. Acta Oceanologica Sinica, 2006, 25(5): 1−13.
    [26]
    Chylek P, Li J, Dubey M K, et al. Observed and model simulated 20th century Arctic temperature variability: Canadian earth system model CanESM2[J]. Atmospheric Chemistry and Physics Discussions, 2011, 11(8): 22893−22907. doi: 10.5194/acpd-11-22893-2011
    [27]
    Gordon H, O'Farrell S, Collier M, et al. The CSIRO Mk3.5 climate model[R]. Aspendale, Victoria, Australia: The Center for Australian Weather and Climate Research, 2010: 62.
    [28]
    Griffies S M, Winton M, Donner L J, et al. The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations[J]. Journal of Climate, 2011, 24(13): 3520−3544. doi: 10.1175/2011JCLI3964.1
    [29]
    Hallberg R. The ability of large-scale ocean models to accept parameterizations of boundary mixing, and a description of a refined bulk mixed-layer model[C]//Proceedings of the 2003‘Aha Huliko’a Hawaiian Winter Workshop. Honolulu, HI: University of Hawaii, 2003: 187-203.
    [30]
    Dunne J P, John J G, Adcroft A J, et al. GFDL’s ESM2 global coupled climate-carbon earth system models. Part I: Physical formulation and baseline simulation characteristics[J]. Journal of Climate, 2012, 25(19): 6646−6665. doi: 10.1175/JCLI-D-11-00560.1
    [31]
    Liu J P, Schmidt G A, Martinson D G, et al. Sensitivity of sea ice to physical parameterizations in the GISS global climate model[J]. Journal of Geophysical Research: Oceans, 2003, 108(C2): 3053.
    [32]
    Peters H, Gregg M C, Toole J M. On the parameterization of equatorial turbulence[J]. Journal of Geophysical Research: Oceans, 1988, 93(C2): 1199−1218. doi: 10.1029/JC093iC02p01199
    [33]
    Martin P J. Simulation of the mixed layer at OWS November and Papa with several models[J]. Journal of Geophysical Research: Oceans, 1985, 90(C1): 903−916. doi: 10.1029/JC090iC01p00903
    [34]
    Johns T C, Durman C F, Banks H T, et al. The new Hadley Centre climate model (HadGEM1): evaluation of coupled simulations[J]. Journal of Climate, 2006, 19(7): 1327−1353. doi: 10.1175/JCLI3712.1
    [35]
    Madec G, Pascale Delécluse, Imbard M, et al. OPA 8.1 ocean general circulation model reference manual[S]. Note Du Pole De Modélisation Institut Pierre Simon Laplace, 2007: 11.
    [36]
    Dufresne J L, Foujols M A, Denvil S, et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5[J]. Climate Dynamics, 2013, 40(9/10): 2123−2165.
    [37]
    Jungclaus J H, Fischer N, Haak H, et al. Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-earth system model[J]. Journal of Advances in Modeling Earth Systems, 2013, 5(2): 422−446. doi: 10.1002/jame.20023
    [38]
    Large W G, McWilliams J C, Doney S C. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization[J]. Reviews of Geophysics, 1994, 32(4): 363−403. doi: 10.1029/94RG01872
    [39]
    Kraus E B, Turner J S. A one-dimensional model of the seasonal thermocline II. The general theory and its consequences[J]. Tellus, 1967, 19(1): 98−106. doi: 10.3402/tellusa.v19i1.9753
    [40]
    Fox-Kemper B, Danabasoglu G, Ferrari R, et al. Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations[J]. Ocean Modelling, 2011, 39(1/2): 61−78.
    [41]
    Pacanowski R C, Philander S G H. Parameterization of vertical mixing in numerical models of tropical oceans[J]. Journal of Physical Oceanography, 1981, 11(11): 1443−1451.
    [42]
    Wiin-Nielsen A, Chen T C. Fundamentals of Atmospheric Energetics[M]. Oxford: Oxford University Press, 1993.
    [43]
    Dutton J A, Johnson D R. The theory of available potential energy and a variational approach to atmospheric energetics[J]. Advances in Geophysics, 1967, 12: 333−436. doi: 10.1016/S0065-2687(08)60379-9
    [44]
    Kang D J, Fringer O. On the calculation of available potential energy in internal wave fields[J]. Journal of Physical Oceanography, 2010, 40(11): 2539−2545. doi: 10.1175/2010JPO4497.1
    [45]
    Venayagamoorthy S K. Nonhydrostatic and nonlinear contributions to the energy flux budget in nonlinear internal waves[J]. Geophysical Research Letters, 2005, 32(15): L15603. doi: 10.1029/2005GL023432
    [46]
    Moum J N, Klymak J M, Nash J D, et al. Energy transport by nonlinear internal waves[J]. Journal of Physical Oceanography, 2007, 37(7): 1968−1988. doi: 10.1175/JPO3094.1
    [47]
    Klymak J M, Moum J N. Internal solitary waves of elevation advancing on a shoaling shelf[J]. Geophysical Research Letters, 2003, 30(20): 2045.
    [48]
    Klymak J M, Pinkel R, Liu C T, et al. Prototypical solitons in the South China Sea[J]. Geophysical Research Letters, 2006, 33(11): L11607. doi: 10.1029/2006GL025932
    [49]
    Wang T, Geyer W R. The balance of salinity variance in a partially stratified estuary: implications for exchange flow, mixing, and stratification[J]. Journal of Physical Oceanography, 2018, 48(12): 2887−2899. doi: 10.1175/JPO-D-18-0032.1
    [50]
    Osborn T R, Cox C S. Oceanic fine structure[J]. Geophysical Fluid Dynamics, 1972, 3(4): 321−345. doi: 10.1080/03091927208236085
    [51]
    Burchard H, Rennau H. Comparative quantification of physically and numerically induced mixing in ocean models[J]. Ocean Modelling, 2008, 20(3): 293−311. doi: 10.1016/j.ocemod.2007.10.003
    [52]
    张宇, 林一骅, 王辉. 垂直湍流输送对大洋的重力位能和混合过程的影响[J]. 大气科学, 2014, 38(5): 838−844.

    Zhang Yu, Lin Yihua, Wang Hui. Impact of vertical turbulence on ocean gravitational potential energy and the tracer mixing process[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(5): 838−844.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article views (288) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return