Citation: | Chen Siyu,Qiao Fangli,Huang Chuanjiang, et al. The reduced winter vertical mixing in the subtropical oceans by the surface wave-induced mixing[J]. Haiyang Xuebao,2020, 42(5):22–30,doi:10.3969/j.issn.0253−4193.2020.05.003 |
[1] |
de Boyer Montégut C, Madec G, Fischer A S, et al. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology[J]. Journal of Geophysical Research, 2004, 109(C12): C12003. doi: 10.1029/2004JC002378
|
[2] |
Martin P J. Simulation of the mixed layer at OWS November and Papa with several models[J]. Journal of Geophysical Research, 1985, 90(C1): 903−916. doi: 10.1029/JC090iC01p00903
|
[3] |
Ezer T. On the seasonal mixed layer simulated by a basin-scale ocean model and the Mellor-Yamada turbulence scheme[J]. Journal of Geophysical Research, 2000, 105(C7): 16843−16855. doi: 10.1029/2000JC900088
|
[4] |
Belcher S E, Grant A L M, Hanley K E, et al. A global perspective on Langmuir turbulence in the ocean surface boundary layer[J]. Geophysical Research Letters, 2012, 39(18): L18605.
|
[5] |
Huang Chuanjiang, Qiao Fangli, Shu Qi, et al. Evaluating austral summer mixed-layer response to surface wave–induced mixing in the Southern Ocean[J]. Journal of Geophysical Research, 2012, 117(C11): C00J18.
|
[6] |
Huang Chuanjiang, Qiao Fangli, Dai Dejun. Evaluating CMIP5 simulations of mixed layer depth during summer[J]. Journal of Geophysical Research, 2014, 119(4): 2568−2582.
|
[7] |
Kuhlbrodt T, Gregory J M. Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change[J]. Geophysical Research Letters, 2012, 39(18): L18608.
|
[8] |
Forest C E, Stone P H, Sokolov A P. Estimated PDFs of climate system properties including natural and anthropogenic forcings[J]. Geophysical Research Letters, 2006, 33(1): L01705.
|
[9] |
Forest C E, Stone P H, Sokolov A P. Constraining climate model parameters from observed 20th century changes[J]. Tellus A: Dynamic Meteorology and Oceanography, 2008, 60(5): 911−920. doi: 10.1111/j.1600-0870.2008.00346.x
|
[10] |
Boé J, Hall A, Qu X. Deep ocean heat uptake as a major source of spread in transient climate change simulations[J]. Geophysical Research Letters, 2009, 36(22): L22701. doi: 10.1029/2009GL040845
|
[11] |
Sokolov A P, Forest C E, Stone P H. Sensitivity of climate change projections to uncertainties in the estimates of observed changes in deep-ocean heat content[J]. Climate Dynamics, 2010, 34(5): 735−745. doi: 10.1007/s00382-009-0556-1
|
[12] |
Griffies S M, Greatbatch R J. Physical processes that impact the evolution of global mean sea level in ocean climate models[J]. Ocean Modelling, 2012, 51: 37−72. doi: 10.1016/j.ocemod.2012.04.003
|
[13] |
Ilıcak M, Adcroft A J, Griffies S M, et al. Spurious dianeutral mixing and the role of momentum closure[J]. Ocean Modelling, 2012, 45-46: 37−58. doi: 10.1016/j.ocemod.2011.10.003
|
[14] |
Flato G, Marotzke J, Abiodun B, et al. Evaluation of climate models[M]//IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013.
|
[15] |
Qiao Fangli, Song Zhenya, Bao Ying, et al. Development and evaluation of an Earth System Model with surface gravity waves[J]. Journal of Geophysical Research, 2013, 118(9): 4514−4524.
|
[16] |
Chen Siyu, Qiao Fangli, Huang Chuanjiang, et al. Effects of the non-breaking surface wave-induced vertical mixing on winter mixed layer depth in subtropical regions[J]. Journal of Geophysical Research, 2018, 123(4): 2934−2944.
|
[17] |
Schmidtko S, Johnson G C, Lyman J M. MIMOC: a global monthly isopycnal upper-ocean climatology with mixed layers[J]. Journal of Geophysical Research, 2013, 118(4): 1658−1672.
|
[18] |
Sallée J B, Shuckburgh E, Bruneau N, et al. Assessment of Southern Ocean mixed-layer depths in CMIP5 models: historical bias and forcing response[J]. Journal of Geophysical Research, 2013, 118(4): 1845−1862.
|
[19] |
Bi Daohua. The ACCESS coupled model: description, control climate and evaluation[J]. Australia Meteorological Oceanography, 2013, 63(1): 41−64. doi: 10.22499/2.6301.004
|
[20] |
Chylek P, Li J, Dubey M K, et al. Observed and model simulated 20th century Arctic temperature variability: Canadian earth system model CanESM2[J]. Atmospheric Chemistry and Physics, 2011, 11(8): 22893−22907.
|
[21] |
Danabasoglu G, Bates S C, Briegleb B P, et al. The CCSM4 ocean component[J]. Journal of Climate, 2012, 25(5): 1361−1389. doi: 10.1175/JCLI-D-11-00091.1
|
[22] |
Madec G, Delecluse P, Imbard M, et al. OPA 8.1 ocean general circulation model reference manual[R]. Paris: Institut Pierre-Simon Laplace, 1998.
|
[23] |
Voldoire A, Sanchez-Gomez E, Salas y Mélia D, et al. The CNRM-CM5.1 global climate model: description and basic evaluation[J]. Climate Dynamics, 2013, 40(9/10): 2091−2121.
|
[24] |
Gordon H B, O’Farrell S P, Collier M A, et al. The CSIRO Mk3.5 climate model[R]. Aspendale: CAWCR, 2010.
|
[25] |
Bao Qing, Lin Pengfei, Zhou Tianjun, et al. The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2[J]. Advances in Atmospheric Sciences, 2013, 30(3): 561−576. doi: 10.1007/s00376-012-2113-9
|
[26] |
Griffies S M, Winton M, Donner L J, et al. The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations[J]. Journal of Climate, 2011, 24(13): 3520−3544. doi: 10.1175/2011JCLI3964.1
|
[27] |
Dunne J P, John J G, Shevliakova E, et al. GFDL's ESM2 global coupled climate-carbon earth system models. Part II: carbon system formulation and baseline simulation characteristics[J]. Journal of Climate, 2013, 26(7): 2247−2267. doi: 10.1175/JCLI-D-12-00150.1
|
[28] |
Sun Shan, Bleck R. Multi-century simulations with the coupled GISS–HYCOM climate model: control experiments[J]. Climate Dynamics, 2006, 26(4): 407−428. doi: 10.1007/s00382-005-0091-7
|
[29] |
Liu Jiping, Schmidt G A, Martinson D G, et al. Sensitivity of sea ice to physical parameterizations in the GISS global climate model[J]. Journal of Geophysical Research, 2003, 108(C2): 3053.
|
[30] |
Gordon C, Cooper C, Senior C A, et al. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments[J]. Climate Dynamics, 2000, 16(2/3): 147−168. doi: 10.1007/s003820050010
|
[31] |
Martin G M, Bellouin N, Collins W J, et al. The HadGEM2 family of Met Office Unified Model climate configurations[J]. Geoscientific Model Development, 2011, 4(3): 723−757. doi: 10.5194/gmd-4-723-2011
|
[32] |
Johns T C, Durman C F, Banks H T, et al. The new Hadley Centre climate model (HadGEM1): evaluation of coupled simulations[J]. Journal of Climate, 2006, 19(7): 1327−1353. doi: 10.1175/JCLI3712.1
|
[33] |
Dufresne J L, Foujols M A, Denvil S, et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5[J]. Climate Dynamics, 2013, 40(9-10): 2123−2165. doi: 10.1007/s00382-012-1636-1
|
[34] |
Sakamoto T T, Komuro Y, Nishimura T, et al. MIROC4h—A new high-resolution atmosphere-ocean coupled general circulation model[J]. Journal of the Meteorological Society of Japan, 2012, 90(3): 325−359. doi: 10.2151/jmsj.2012-301
|
[35] |
Watanabe M, Suzuki T, O’ishi R, et al. Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity[J]. Journal of Climate, 2010, 23(23): 6312−6335. doi: 10.1175/2010JCLI3679.1
|
[36] |
Watanabe S, Hajima T, Sudo K, et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments[J]. Geoscientific Model Development, 2011, 4(4): 845−872. doi: 10.5194/gmd-4-845-2011
|
[37] |
Jungclaus J H, Fischer N, Haak H, et al. Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-earth system model[J]. Journal of Advances in Modeling Earth Systems, 2013, 5(2): 422−446. doi: 10.1002/jame.20023
|
[38] |
Yukimoto S, Adachi Y, Hosaka M, et al. A new global climate model of the meteorological research institute: MRI-CGCM3—model description and basic performance[J]. Journal of the Meteorological Society of Japan, 2012, 90A: 23−64. doi: 10.2151/jmsj.2012-A02
|
[39] |
Bentsen M, Bethke I, Debernard J B, et al. The Norwegian Earth System Model, NorESM1-M Part 1: Description and basic evaluation[J]. Geoscientific Model Development Discussions, 2013(6): 687−720.
|