Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 42 Issue 5
Nov.  2020
Turn off MathJax
Article Contents
Chen Siyu,Qiao Fangli,Huang Chuanjiang, et al. The reduced winter vertical mixing in the subtropical oceans by the surface wave-induced mixing[J]. Haiyang Xuebao,2020, 42(5):22–30,doi:10.3969/j.issn.0253−4193.2020.05.003
Citation: Chen Siyu,Qiao Fangli,Huang Chuanjiang, et al. The reduced winter vertical mixing in the subtropical oceans by the surface wave-induced mixing[J]. Haiyang Xuebao,2020, 42(5):22–30,doi:10.3969/j.issn.0253−4193.2020.05.003

The reduced winter vertical mixing in the subtropical oceans by the surface wave-induced mixing

doi: 10.3969/j.issn.0253-4193.2020.05.003
  • Received Date: 2019-04-08
  • Rev Recd Date: 2019-05-09
  • Available Online: 2020-11-18
  • Publish Date: 2020-05-25
  • The ocean mixing is one of the most important parameters in the global climate system. The simulation biases of the stratification and the ocean mixing are still open questions. Compared to observations, the simulated multi-model mean stratification during winter in the subtropical regions of both hemispheres shows week bias from 45 CMIP5 climate models. Our results from two numerical experiments using one of CMIP5 models, FIO-ESM v1.0, show that the non-breaking surface wave-induced vertical mixing can serve as a remedy. It increases the temperature of the upper ocean in winter which then stabilize the upper ocean and increase the stratification in subtropical regions. As a result, the stronger stratification restrains the ocean vertical mixing. The simulation of ocean mixing reduce from 227 cm/m2 to 178 cm/m2 in the north subtropical in winter, and from 189 cm/m2 to 165 cm/m2 in the south subtropical. They reduced by 21.6% and 12.7%, respectively. Further analysis indicated that the the surface wave-induced mixing strengthen the stratification by the increasing the upper ocean heat content and then improve the simulation of the ocean mixing.
  • loading
  • [1]
    de Boyer Montégut C, Madec G, Fischer A S, et al. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology[J]. Journal of Geophysical Research, 2004, 109(C12): C12003. doi: 10.1029/2004JC002378
    [2]
    Martin P J. Simulation of the mixed layer at OWS November and Papa with several models[J]. Journal of Geophysical Research, 1985, 90(C1): 903−916. doi: 10.1029/JC090iC01p00903
    [3]
    Ezer T. On the seasonal mixed layer simulated by a basin-scale ocean model and the Mellor-Yamada turbulence scheme[J]. Journal of Geophysical Research, 2000, 105(C7): 16843−16855. doi: 10.1029/2000JC900088
    [4]
    Belcher S E, Grant A L M, Hanley K E, et al. A global perspective on Langmuir turbulence in the ocean surface boundary layer[J]. Geophysical Research Letters, 2012, 39(18): L18605.
    [5]
    Huang Chuanjiang, Qiao Fangli, Shu Qi, et al. Evaluating austral summer mixed-layer response to surface wave–induced mixing in the Southern Ocean[J]. Journal of Geophysical Research, 2012, 117(C11): C00J18.
    [6]
    Huang Chuanjiang, Qiao Fangli, Dai Dejun. Evaluating CMIP5 simulations of mixed layer depth during summer[J]. Journal of Geophysical Research, 2014, 119(4): 2568−2582.
    [7]
    Kuhlbrodt T, Gregory J M. Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change[J]. Geophysical Research Letters, 2012, 39(18): L18608.
    [8]
    Forest C E, Stone P H, Sokolov A P. Estimated PDFs of climate system properties including natural and anthropogenic forcings[J]. Geophysical Research Letters, 2006, 33(1): L01705.
    [9]
    Forest C E, Stone P H, Sokolov A P. Constraining climate model parameters from observed 20th century changes[J]. Tellus A: Dynamic Meteorology and Oceanography, 2008, 60(5): 911−920. doi: 10.1111/j.1600-0870.2008.00346.x
    [10]
    Boé J, Hall A, Qu X. Deep ocean heat uptake as a major source of spread in transient climate change simulations[J]. Geophysical Research Letters, 2009, 36(22): L22701. doi: 10.1029/2009GL040845
    [11]
    Sokolov A P, Forest C E, Stone P H. Sensitivity of climate change projections to uncertainties in the estimates of observed changes in deep-ocean heat content[J]. Climate Dynamics, 2010, 34(5): 735−745. doi: 10.1007/s00382-009-0556-1
    [12]
    Griffies S M, Greatbatch R J. Physical processes that impact the evolution of global mean sea level in ocean climate models[J]. Ocean Modelling, 2012, 51: 37−72. doi: 10.1016/j.ocemod.2012.04.003
    [13]
    Ilıcak M, Adcroft A J, Griffies S M, et al. Spurious dianeutral mixing and the role of momentum closure[J]. Ocean Modelling, 2012, 45-46: 37−58. doi: 10.1016/j.ocemod.2011.10.003
    [14]
    Flato G, Marotzke J, Abiodun B, et al. Evaluation of climate models[M]//IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013.
    [15]
    Qiao Fangli, Song Zhenya, Bao Ying, et al. Development and evaluation of an Earth System Model with surface gravity waves[J]. Journal of Geophysical Research, 2013, 118(9): 4514−4524.
    [16]
    Chen Siyu, Qiao Fangli, Huang Chuanjiang, et al. Effects of the non-breaking surface wave-induced vertical mixing on winter mixed layer depth in subtropical regions[J]. Journal of Geophysical Research, 2018, 123(4): 2934−2944.
    [17]
    Schmidtko S, Johnson G C, Lyman J M. MIMOC: a global monthly isopycnal upper-ocean climatology with mixed layers[J]. Journal of Geophysical Research, 2013, 118(4): 1658−1672.
    [18]
    Sallée J B, Shuckburgh E, Bruneau N, et al. Assessment of Southern Ocean mixed-layer depths in CMIP5 models: historical bias and forcing response[J]. Journal of Geophysical Research, 2013, 118(4): 1845−1862.
    [19]
    Bi Daohua. The ACCESS coupled model: description, control climate and evaluation[J]. Australia Meteorological Oceanography, 2013, 63(1): 41−64. doi: 10.22499/2.6301.004
    [20]
    Chylek P, Li J, Dubey M K, et al. Observed and model simulated 20th century Arctic temperature variability: Canadian earth system model CanESM2[J]. Atmospheric Chemistry and Physics, 2011, 11(8): 22893−22907.
    [21]
    Danabasoglu G, Bates S C, Briegleb B P, et al. The CCSM4 ocean component[J]. Journal of Climate, 2012, 25(5): 1361−1389. doi: 10.1175/JCLI-D-11-00091.1
    [22]
    Madec G, Delecluse P, Imbard M, et al. OPA 8.1 ocean general circulation model reference manual[R]. Paris: Institut Pierre-Simon Laplace, 1998.
    [23]
    Voldoire A, Sanchez-Gomez E, Salas y Mélia D, et al. The CNRM-CM5.1 global climate model: description and basic evaluation[J]. Climate Dynamics, 2013, 40(9/10): 2091−2121.
    [24]
    Gordon H B, O’Farrell S P, Collier M A, et al. The CSIRO Mk3.5 climate model[R]. Aspendale: CAWCR, 2010.
    [25]
    Bao Qing, Lin Pengfei, Zhou Tianjun, et al. The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2[J]. Advances in Atmospheric Sciences, 2013, 30(3): 561−576. doi: 10.1007/s00376-012-2113-9
    [26]
    Griffies S M, Winton M, Donner L J, et al. The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations[J]. Journal of Climate, 2011, 24(13): 3520−3544. doi: 10.1175/2011JCLI3964.1
    [27]
    Dunne J P, John J G, Shevliakova E, et al. GFDL's ESM2 global coupled climate-carbon earth system models. Part II: carbon system formulation and baseline simulation characteristics[J]. Journal of Climate, 2013, 26(7): 2247−2267. doi: 10.1175/JCLI-D-12-00150.1
    [28]
    Sun Shan, Bleck R. Multi-century simulations with the coupled GISS–HYCOM climate model: control experiments[J]. Climate Dynamics, 2006, 26(4): 407−428. doi: 10.1007/s00382-005-0091-7
    [29]
    Liu Jiping, Schmidt G A, Martinson D G, et al. Sensitivity of sea ice to physical parameterizations in the GISS global climate model[J]. Journal of Geophysical Research, 2003, 108(C2): 3053.
    [30]
    Gordon C, Cooper C, Senior C A, et al. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments[J]. Climate Dynamics, 2000, 16(2/3): 147−168. doi: 10.1007/s003820050010
    [31]
    Martin G M, Bellouin N, Collins W J, et al. The HadGEM2 family of Met Office Unified Model climate configurations[J]. Geoscientific Model Development, 2011, 4(3): 723−757. doi: 10.5194/gmd-4-723-2011
    [32]
    Johns T C, Durman C F, Banks H T, et al. The new Hadley Centre climate model (HadGEM1): evaluation of coupled simulations[J]. Journal of Climate, 2006, 19(7): 1327−1353. doi: 10.1175/JCLI3712.1
    [33]
    Dufresne J L, Foujols M A, Denvil S, et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5[J]. Climate Dynamics, 2013, 40(9-10): 2123−2165. doi: 10.1007/s00382-012-1636-1
    [34]
    Sakamoto T T, Komuro Y, Nishimura T, et al. MIROC4h—A new high-resolution atmosphere-ocean coupled general circulation model[J]. Journal of the Meteorological Society of Japan, 2012, 90(3): 325−359. doi: 10.2151/jmsj.2012-301
    [35]
    Watanabe M, Suzuki T, O’ishi R, et al. Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity[J]. Journal of Climate, 2010, 23(23): 6312−6335. doi: 10.1175/2010JCLI3679.1
    [36]
    Watanabe S, Hajima T, Sudo K, et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments[J]. Geoscientific Model Development, 2011, 4(4): 845−872. doi: 10.5194/gmd-4-845-2011
    [37]
    Jungclaus J H, Fischer N, Haak H, et al. Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-earth system model[J]. Journal of Advances in Modeling Earth Systems, 2013, 5(2): 422−446. doi: 10.1002/jame.20023
    [38]
    Yukimoto S, Adachi Y, Hosaka M, et al. A new global climate model of the meteorological research institute: MRI-CGCM3—model description and basic performance[J]. Journal of the Meteorological Society of Japan, 2012, 90A: 23−64. doi: 10.2151/jmsj.2012-A02
    [39]
    Bentsen M, Bethke I, Debernard J B, et al. The Norwegian Earth System Model, NorESM1-M Part 1: Description and basic evaluation[J]. Geoscientific Model Development Discussions, 2013(6): 687−720.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (239) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return