Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Liu Zhizhong,Yang Jungang,Zhang Jie, et al. Jason-3 global statistical assessment based on Jason-2[J]. Haiyang Xuebao,2020, 42(3):129–139,doi:10.3969/j.issn.0253−4193.2020.03.012
Citation: Liu Zhizhong,Yang Jungang,Zhang Jie, et al. Jason-3 global statistical assessment based on Jason-2[J]. Haiyang Xuebao,2020, 42(3):129–139,doi:10.3969/j.issn.0253−4193.2020.03.012

Jason-3 global statistical assessment based on Jason-2

doi: 10.3969/j.issn.0253-4193.2020.03.012
  • Received Date: 2019-04-22
  • Rev Recd Date: 2019-09-06
  • Available Online: 2020-11-18
  • Publish Date: 2020-03-25
  • Jason-3 satellite was successfully launched on January 17, 2016, and was put on its nominal orbit on February 12, 2016. Jason-3 was flying in formation with Jason-2 only 1 minute 20 seconds, and was about 560 km from Jason-2. Jason-2 was moved to its new interleaved orbit on September 1, 2016. Two orbits were parallel to increase the spatial coverage of satellite observations. The objectives of this paper are to assess Jason-3 data quality and to estimate the altimetry system performance includes validation of Jason-3 data availability and data quality monitoring of Jason-3 and radiometer parameters. The objectives focused on comprehensive comparison of the parameters of the Jason-2 and Jason-3, accurately evaluated the consistency of the two altimeter parameters using the opportunity that the missions were on the same ground track during the formation flight phase, analyzed the ability and stability of the Jason-3 from the perspective of global data, verified Jason-3 data accuracy by self-crossover analysis and dual crossover analysis with Jason-2. From the results presented here, it is demonstrated that the Jason-3 mission fulfils the requirements of high precision altimetry. It allows continuing the observation of the sea surface height variations at the same or higher accuracy as Jason-1, Jason-2 and T/P. In addition, significant wave height quality of Jason-3 data is significantly better than the Jason-2.
  • loading
  • [1]
    崔伟, 王伟, 马毅, 等. 基于1993–2014年高度计数据的西北太平洋中尺度涡识别和特征分析[J]. 海洋学报, 2017, 39(2): 16−28.

    Cui Wei, Wang Wei, Ma Yi, et al. Identification and analysis of mesoscale eddies in the Northwestern Pacific Ocean from 1993-2014 based on altimetry data[J]. Haiyang Xuebao, 2017, 39(2): 16−28.
    [2]
    胡冬, 陈希, 毛科峰, 等. 黑潮延伸体邻近区域中尺度涡特征统计分析[J]. 海洋与湖沼, 2018, 49(3): 497−511.

    Hu Dong, Chen Xi, Mao Kefeng, et al. Statistical characteristics of mesoscale eddies near the kuroshio extension region[J]. Ocean and Lakes, 2018, 49(3): 497−511.
    [3]
    赵杰, 汪一航, 王永刚, 等. 基于卫星高度计资料提取浙江近海的潮汐信息[J]. 应用海洋学学报, 2018, 37(3): 356−365. doi: 10.3969/J.ISSN.2095-4972.2018.03.007

    Zhao Jie, Wang Yihang, Wang Yonggang, et al. Extraction of tidal information on Zhejiang offshore based on satellite altimetry data[J]. Journal of Applied Oceanography, 2018, 37(3): 356−365. doi: 10.3969/J.ISSN.2095-4972.2018.03.007
    [4]
    王天驹, 齐琳琳, 朱江, 等. HY-2卫星高度计波高资料在集合最优插值同化中的应用研究——以台风“Lipee”为例[J]. 海洋学报, 2017, 39(2): 29−38.

    Wang Tianju, Qi Linlin, Zhu Jiang, et al. Application studies of using HY-2 satellite altimeter wave data in ensemble optimal interpolation method——"Lipee" for instance[J]. Haiyang Xuebao, 2017, 39(2): 29−38.
    [5]
    贾永君, 林明森, 张有广. 海洋二号卫星A星雷达高度计在海洋防灾减灾中的应用[J]. 卫星应用, 2018(5): 34−39. doi: 10.3969/j.issn.1674-9030.2018.05.010

    Jia Yongjun, Lin Mingsen, Zhang Youguang. Application of ocean altimeter a satellite radar altimeter in marine disaster prevention and mitigation[J]. Satellite Applications, 2018(5): 34−39. doi: 10.3969/j.issn.1674-9030.2018.05.010
    [6]
    赵小阳, 李建成, 王正涛, 等. 利用卫星测高技术监测厄尔尼诺和拉尼娜现象[J]. 海洋测绘, 2007, 27(1): 41−44. doi: 10.3969/j.issn.1671-3044.2007.01.011

    Zhao Xiaoyang, Li Jiancheng, Wang Zhengtao, et al. Using satellite altimetry technique for monitoring El Niño and La Nña phenomenon[J]. Marine Surveying and Mapping, 2007, 27(1): 41−44. doi: 10.3969/j.issn.1671-3044.2007.01.011
    [7]
    杨磊, 周兴华, 彭海龙, 等. 基于Jason-2的Saral/AltiKa高度计全球统计评估与交叉定标[J]. 海洋科学进展, 2014, 32(4): 482−490. doi: 10.3969/j.issn.1671-6647.2014.04.005

    Yang Lei, Zhou Xinghua, Peng Hailong, et al. Global assessment and cross-calibration of Saral/AltiKa based on Jason-2 altimeter[J]. Advances in Marine Science, 2014, 32(4): 482−490. doi: 10.3969/j.issn.1671-6647.2014.04.005
    [8]
    Prandi P, Philipps S, Pignot V, et al. SARAL/AltiKa global statistical assessment and cross-calibration with jason-2[J]. Marine Geodesy, 2015, 38(S1): 297−312.
    [9]
    Chambers D P, Ries J C, Urban T J. Calibration and verification of jason-1 using global along-track residuals with TOPEX special issue: jason-1 calibration/validation[J]. Marine Geodesy, 2003, 26(3/4): 305−317. doi: 10.1080/714044523
    [10]
    彭海龙, 林明森, 穆博, 等. HY-2A卫星雷达高度计数据的全球统计评价及质量分析[J]. 海洋学报, 2015, 37(7): 54−66.

    Peng Hailong, Lin Mingsen, Mu Bo, et al. Global statistical evaluation and performance analysis of HY-2A satellite radar altimeter data[J]. Haiyang Xuebao, 2015, 37(7): 54−66.
    [11]
    Dorandeu J, Ablain M, Faugère Y, et al. Jason-1 global statistical evaluation and performance assessment: Calibration and cross-calibration results[J]. Marine Geodesy, 2004, 27(3/4): 345−372. doi: 10.1080/01490410490889094
    [12]
    Ablain M, Philipps S, Picot N, et al. Jason-2 global statistical assessment and cross-calibration with Jason-1[J]. Marine Geodesy, 2010, 33(S1): 162−185. doi: 10.1080/01490419.2010.487805
    [13]
    翟国君, 黄漠涛, 谢锡君, 等. 卫星测高数据处理的理论与方法[M]. 北京: 测绘出版社, 2000.

    Zhai Guojun, Huang Motao, Xie Xijun, et al. Theories and Methods of Satellite Altimetry Data Processing[M]. Beijing: Surveying and Mapping Press, 2000.
    [14]
    汪海洪, 罗北. 计算测高卫星地面轨迹交叉点的快速数值算法[J]. 武汉大学学报: 信息科学版, 2017, 42(3): 293−298.

    Wang Haihong, Luo Bei. Fast numerical algorithm for the calculation of altimetric crossovers from satellite ground tracks[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 293−298.
    [15]
    Wessel P. Tools for analyzing intersecting tracks: The x2sys package[J]. Computers & Geosciences, 2010, 36(3): 348−354.
    [16]
    Desjonquères J D, Carayon G, Steunou N, et al. Poseidon-3 radar altimeter: new modes and in-flight performances[J]. Marine Geodesy, 2010, 33(S1): 53−79. doi: 10.1080/01490419.2010.488970
    [17]
    崔伟. 多源卫星高度计海面高度异常数据融合研究[D]. 青岛: 国家海洋局第一海洋研究所, 2016.

    Cui Wei. The study of merging sea level anomalies data derived from multi-satellite altimeter[D]. Qingdao: First Institute of Oceanography, State Oceanic Administration, 2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(1)

    Article views (1199) PDF downloads(133) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return