Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Zhou Qingjie,Li Xishuang,Liu Lejun, et al. Physical properties of the seabed inversed based on Chirp data and the Biot-Stoll model in the northern continental slope of the South China Sea[J]. Haiyang Xuebao,2020, 42(3):72–82,doi:10.3969/j.issn.0253−4193.2020.03.007
Citation: Zhou Qingjie,Li Xishuang,Liu Lejun, et al. Physical properties of the seabed inversed based on Chirp data and the Biot-Stoll model in the northern continental slope of the South China Sea[J]. Haiyang Xuebao,2020, 42(3):72–82,doi:10.3969/j.issn.0253−4193.2020.03.007

Physical properties of the seabed inversed based on Chirp data and the Biot-Stoll model in the northern continental slope of the South China Sea

doi: 10.3969/j.issn.0253-4193.2020.03.007
  • Received Date: 2019-05-21
  • Rev Recd Date: 2019-08-27
  • Available Online: 2020-11-18
  • Publish Date: 2020-03-25
  • Sub-bottom profile is based on the acoustic signal (frequency in hundreds to thousands Hz) in the sediment propagation to reflect the sedimentary formation structure. The seabed reflection coefficient is closely related to the sediments physical properties. The Biot-Stoll theoretical model can predict the physical properties of seabed sediments and establish the relationship between acoustic parameters such as reflection coefficient and physical parameters, but the results obtained by using different parameters in different sea areas are different. For this, this article is based on the measured sediments physical parameters in the northern slope of the South China Sea to establish the relationship between the reflection coefficient and the sediments physical parameters based on Biot-Stoll model. The results show that the calculated value of the model is in good agreement with the measured value of the sample, and the equation for the relationship between the bottom reflection coefficient and the porosity, density, mean grain size of sediments at a frequency of 3.5 kHz is established. The equation has a high fitting degree, and the determination coefficient R2 is all greater than 0.99. On the basis of calculating the seabed reflection coefficient by the typical Chirp profile data, the porosity, density and mean grain size of the sub-bottom sediments are inversed. The relative errors of the inversion porosity, density, mean grain size and the measured porosity, density, mean grain size are all less than 5%, and the results are basically consistent with the measured values, indicating that the inversion method is feasible in the northern continental slope area of the South China Sea.
  • loading
  • [1]
    何起祥. 中国海洋沉积地质学[M]. 北京: 海洋出版社, 2006.

    He Qixing. Marine Sedimentary Geology of China[M]. Beijing: China Ocean press, 2006.
    [2]
    Schock S G. A method for estimating the physical and acoustic properties of the sea bed using chirp sonar data[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4): 1200−1217. doi: 10.1109/JOE.2004.841421
    [3]
    Schock S G. Remote estimates of physical and acoustic sediment properties in the South China Sea using chirp sonar data and the biot model[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4): 1218−1230. doi: 10.1109/JOE.2004.842253
    [4]
    曹正良, 张叔英, 马在田. BICSQS模型与Biot-Stoll模型海底界面声波反射和散射的比较[J]. 声学学报, 2006, 31(5): 389−398. doi: 10.3321/j.issn:0371-0025.2006.05.002

    Cao Zhengliang, Zhang Shuying, Ma Zaitian. Comparison of reflections and interface scatterings from BICSQS model and Biot-Stoll model seafloors[J]. Acta Acustica, 2006, 31(5): 389−398. doi: 10.3321/j.issn:0371-0025.2006.05.002
    [5]
    朱祖扬, 王东, 周建平, 等. 基于非饱和Biot-Stoll模型的海底沉积物介质声频散特性研究[J]. 地球物理学报, 2012, 55(1): 180−188. doi: 10.6038/j.issn.0001-5733.2012.01.017

    Zhu Zuyang, Wang Dong, Zhou Jianping, et al. Acoustic wave dispersion and attenuation in marine sediment based on partially gas-saturated Biot-Stoll model[J]. Chinese Journal of Geophysics, 2012, 55(1): 180−188. doi: 10.6038/j.issn.0001-5733.2012.01.017
    [6]
    陈静, 阎贫, 王彦林, 等. 基于Biot-Stoll模型声速反演中的参数选择——以南海南部沉积物为例[J]. 热带海洋学报, 2012, 31(1): 50−54.

    Chen Jing, Yan Pin, Wang Yanlin, et al. Choice of parameters for Biot-Stoll model-based inversion of sound velocity of seafloor sediments in the southern South China Sea[J]. Journal of Tropical Oceanography, 2012, 31(1): 50−54.
    [7]
    王景强, 郭常升, 刘保华, 等. 基于Buckingham模型和Biot-Stoll模型的南沙海域沉积物声速分布特征[J]. 地球学报, 2016, 37(3): 359−367. doi: 10.3975/cagsb.2016.03.13

    Wang Jingqiang, Guo Changsheng, Liu Baohua, et al. Sound speed distribution of seafloor sediments in Nansha Islands sea based on Buckingham model and Biot-Stoll model[J]. Acta Geoscientica Sinica, 2016, 37(3): 359−367. doi: 10.3975/cagsb.2016.03.13
    [8]
    陶春辉. 海底沉积物声学原位测试和特性研究[D]. 杭州: 浙江大学, 2005.

    Tao Chunhui. In situ acoustic experiment and properties study in marine sediments[D]. Hangzhou: Zhejiang University, 2005.
    [9]
    陈静, 吕修亚, 陈亮, 等. 基于Chirp数据反演琼州海峡海底沉积物物性[J]. 热带地理, 2017, 37(6): 874−879.

    Chen Jing, Lü Xiuya, Chen Liang, et al. Physical properties of the seabed inversed by chirp data in the Qiongzhou Strait[J]. Tropical Geography, 2017, 37(6): 874−879.
    [10]
    Velis D R. Stochastic sparse-spike deconvolution[J]. Geophysics, 2008, 73(1): 1−9.
    [11]
    Puryear C I, Castagna J P. Layer-thickness determination and stratigraphic interpretation using spectral inversion: Theory and application[J]. Geophysics, 2008, 73(2): R37−R48. doi: 10.1190/1.2838274
    [12]
    Zhang Rui, Castagna J. Seismic sparse-layer reflectivity inversion using basis pursuit decomposition[J]. Geophysics, 2011, 76(6): R147−R158. doi: 10.1190/geo2011-0103.1
    [13]
    Yuan Sanyi, Wang Shangxu. Spectral sparse Bayesian learning reflectivity inversion[J]. Geophysical Prospecting, 2013, 61(4): 735−746. doi: 10.1111/1365-2478.12000
    [14]
    Li X S, Zhou Q J, Su T Y, et al. Slope-confined submarine canyons in the Baiyun deep-water area, northern South China Sea: variation in their modern morphology[J]. Marine Geophysical Research, 2016(2): 95−112.
    [15]
    丁巍伟, 黎明碧, 何敏, 等. 南海中北部陆架-陆坡区新生代构造-沉积演化[J]. 高校地质学报, 2009, 15(3): 339−350. doi: 10.3969/j.issn.1006-7493.2009.03.006

    Ding Weiwei, Li Mingbi, He Min, et al. Cenozoic tectono-sedimentary evolution in the middle part of northern continental shelf-slope region, South China Sea[J]. Geological Journal of China Universities, 2009, 15(3): 339−350. doi: 10.3969/j.issn.1006-7493.2009.03.006
    [16]
    Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 168−178. doi: 10.1121/1.1908239
    [17]
    Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. Ⅱ. Higher frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 179−191. doi: 10.1121/1.1908241
    [18]
    Stoll R D. Acoustic waves in saturated sediments[M]//Hampton L. Physics of Sound in Marine Sediments. Boston, MA: Springer, 1974: 19−39.
    [19]
    朱林, 傅命佐, 刘乐军, 等. 南海北部白云凹陷陆坡海底峡谷地形地貌与沉积地层特征[J]. 海洋地质与第四纪地质, 2014, 34(2): 1−9.

    Zhu Lin, Fu Mingzuo, Liu Lejun, et al. Canyon morphology and sediments on northern slope of the Baiyun Sag[J]. Marine Geology & Quaternary Geology, 2014, 34(2): 1−9.
    [20]
    周庆杰, 李西双, 徐元芹, 等. 一种基于水深梯度原理的海底滑坡快速识别方法——以南海北部陆坡白云深水区为例[J]. 海洋学报, 2017, 39(1): 138−147.

    Zhou Qingjie, Li Xishuang, Xu Yuanqin, et al. A rapid method to recognize submarine landslides based on the principle of water depth gradient: A case of Baiyun deep-water area, north slope of the South China Sea[J]. Haiyang Xuebao, 2017, 39(1): 138−147.
    [21]
    秦蕴珊. 中国陆棚海的地形及沉积类型的初步研究[J]. 海洋与湖沼, 1963, 5(1): 71−85.

    Qin Yunshan. A preliminary study on the topography and sedimentary types of continental shelf seas in China[J]. Oceanologia et Limnologia Sinica, 1963, 5(1): 71−85.
    [22]
    杨涛, 薛紫晨, 杨竞红, 等. 南海北部地区海洋沉积物中孔隙水的氢、氧同位素组成特征[J]. 地球学报, 2003, 24(6): 511−514. doi: 10.3321/j.issn:1006-3021.2003.06.005

    Yang Tao, Xue Zichen, Yang Jinghong, et al. Oxygen and hydrogen isotopic compositions of pore water from marine sediments in the northern South China Sea[J]. Acta Geoscientica Sinica, 2003, 24(6): 511−514. doi: 10.3321/j.issn:1006-3021.2003.06.005
    [23]
    卢博. 东沙群岛海域沉积物及其物理学性质的研究[J]. 海洋学报, 1996, 18(6): 82−89.

    Lu Bo. Study on sediments and their physical properties in the waters of Dongsha Islands[J]. Haiyang Xuebao, 1996, 18(6): 82−89.
    [24]
    李傲仙, 李延河, 乐国良. 深海沉积物中碲异常的成因[J]. 地球学报, 2005, 26(S1): 186−189.

    Li Aoxian, Li Yanhe, Le Guoliang. The cause for tellurium enrichment in deep-sea sediments[J]. Acta Geoscientica Sinica, 2005, 26(S1): 186−189.
    [25]
    Liu Jianguo, Xiang Rong, Chen Zhong, et al. Sources, transport and deposition of surface sediments from the South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2013, 71: 92−102. doi: 10.1016/j.dsr.2012.09.006
    [26]
    Zhao Hongquan, Jian Zhimin, Li Baohua, et al. Microtektites in the Middle Pleistocene deep-sea sediments of the South China Sea[J]. Science in China Series D: Earth Sciences, 1999, 42(5): 531−535. doi: 10.1007/BF02875247
    [27]
    业治铮, 何起祥, 张明书, 等. 西沙石岛晚更新世风成生物砂屑灰岩的沉积构造和相模式[J]. 沉积学报, 1985, 3(1): 1−15.

    Ye Zhizheng, He Qixiang, Zhang Mingshu, et al. Sedimentary structure and facies pattern of bioarenaceous limestone in late pleistocene of Xisha Shidao[J]. Acta Sedimentologica Sinica, 1985, 3(1): 1−15.
    [28]
    刘乐军, 傅命佐, 李家钢, 等. 荔湾3-1气田海底管道深水段地质灾害特征[J]. 海洋科学进展, 2014, 32(2): 162−174. doi: 10.3969/j.issn.1671-6647.2014.02.006

    Liu Lejun, Fu Mingzuo, Li Jiagang, et al. Geologic hazards in the deep pipeline routing area of the Liwan 3-1 Gas Field in the South China Sea[J]. Advances in Marine Science, 2014, 32(2): 162−174. doi: 10.3969/j.issn.1671-6647.2014.02.006
    [29]
    Zhou Qingjie, Li Xishuang, Zhou Hang, et al. Characteristics and genetic analysis of submarine landslides in the northern slope of the South China Sea[J]. Marine Geophysical Research, 2018, 40(3): 303−314.
    [30]
    卢博, 李赶先, 黄韶健, 等. 中国黄海、东海和南海北部海底浅层沉积物声学物理性质之比较[J]. 海洋技术, 2005, 24(2): 28−33. doi: 10.3969/j.issn.1003-2029.2005.02.008

    Lu Bo, Li Ganxian, Huang Shaojian, et al. The comparing of seabed sediment acoustic-physical properties in the Yellow Sea, the East China Sea and northern the South China Sea[J]. Ocean Technology, 2005, 24(2): 28−33. doi: 10.3969/j.issn.1003-2029.2005.02.008
    [31]
    黄绪德. 计算机在地学中的应用[J]. 物探化探计算技术, 1991, 13(2): 93−97.

    Huang Xude. Computer applications to geoscience[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1991, 13(2): 93−97.
    [32]
    刘财, 刘洋, 王典, 等. 一种频域吸收衰减补偿方法[J]. 石油物探, 2005, 44(2): 116−118. doi: 10.3969/j.issn.1000-1441.2005.02.005

    Liu Cai, Liu Yang, Wang Dian, et al. A method to compensate strata absorption and attenuation in frequency domain[J]. Geophysical Prospecting for Petroleum, 2005, 44(2): 116−118. doi: 10.3969/j.issn.1000-1441.2005.02.005
    [33]
    张志军, 周东红, 孙成禹, 等. 基于三维模型数据的地震振幅补偿处理技术的保幅性分析[J]. 物探与化探, 2015, 39(3): 621−626. doi: 10.11720/wtyht.2015.3.32

    Zhang Zhijun, Zhou Donghong, Sun Chengyu, et al. An analysis of the amplitude preservation of seismic amplitude compensation processing technology based on 3D model data[J]. Geophysical and Geochemical Exploration, 2015, 39(3): 621−626. doi: 10.11720/wtyht.2015.3.32
    [34]
    Park C, Kim W, Shin J, et al. Study on acoustic impedance conversion using an optimal chirplet analyzed in chirp SBP raw data[J]. Marine Geophysical Research, 2019, 40(3): 385−393. doi: 10.1007/s11001-019-09377-7
    [35]
    赵利, 彭学超, 钟和贤, 等. 南海北部陆架区表层沉积物粒度特征与沉积环境[J]. 海洋地质与第四纪, 2016, 36(6): 111−122.

    Zhao Li, Peng Xuechao, Zhong Hexian, et al. Characteristics of grain size distribution of surface sediments and depositional environments in the northern shelf region of the South China Sea[J]. Marine Geology & Quaternary Geology, 2016, 36(6): 111−122.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article views (755) PDF downloads(117) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return