Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Luo Fengyun,Tan Wei,Li Juan, et al. Different sea level variations in the South China Sea in response to two types of El Niño[J]. Haiyang Xuebao,2020, 42(3):36–46,doi:10.3969/j.issn.0253−4193.2020.03.004
Citation: Luo Fengyun,Tan Wei,Li Juan, et al. Different sea level variations in the South China Sea in response to two types of El Niño[J]. Haiyang Xuebao,2020, 42(3):36–46,doi:10.3969/j.issn.0253−4193.2020.03.004

Different sea level variations in the South China Sea in response to two types of El Niño

doi: 10.3969/j.issn.0253-4193.2020.03.004
  • Received Date: 2019-04-26
  • Rev Recd Date: 2019-07-14
  • Available Online: 2020-11-18
  • Publish Date: 2020-03-25
  • Using the ECMWF ORAS4 reconstruction data, the different response characteristics of the South China Sea Sea Level Anomaly (SLA) to the Eastern Pacific (EP) El Niño and the Central Pacific (CP) El Niño were analyzed. The South China Sea SLA showed different spatial and temporal evolution during the two types of El Niño. For the EP El Niño, the average SLA in the South China Sea decreased significantly in the autumn and winter of the developing year, with a minimum of −2 cm, and began to rise in the following year, up to 2 cm in the following winter. In terms of spatial distribution, in the autumn and winter of developing year, except for the existence of a positive anomaly to the southeast of Vietnam, in most of the South China Sea, SLAs are characterized by significant negative anomalies; from the spring of the following year, SLA negatively weakens, while the southeastern part of Vietnam was beginning to develop abnormally until the majority of the South China Sea is dominated by positive anomalies. For the CP El Niño, the South China Sea SLA showed significant negative anomalies throughout the El Niño development and decline, the outliers were always maintained at around −2 cm, and spatially represented as a consistent negative anomaly of the whole basin. Compared with the traditional empirical orthogonal decomposition (EOF), the seasonal EOF (S-EOF) can better characterize the temporal and spatial evolution of the South China Sea SLA during the two types of El Niño. The first mode of the S-EOF is CP El Niño mode, while the second mode is more characterized by the evolution of the South China Sea SLA during the EP El Niño. The different variations of the South China Sea SLA during the two types of El Niño are mainly due to the thermal specific volume effect caused by the thermal advection transport anomaly at the channel, but the contribution of the thermosteric sea level is mainly concentrated in the interior South China Sea. While in the coastal regions, such as the western South China Sea, the mechanism of sea level change needs further study.
  • loading
  • [1]
    Chao S Y, Shaw P T, Wu S Y. Deep water ventilation in the South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1996, 43(4): 445−466. doi: 10.1016/0967-0637(96)00025-8
    [2]
    Chen C T A, Huang M H. A mid-depth front separating the South China Sea water and the Philippine sea water[J]. Journal of Oceanography, 1996, 52(1): 17−25. doi: 10.1007/BF02236530
    [3]
    Qu Tangdong, Song Y T, Yamagata T. An introduction to the South China Sea throughflow: its dynamics, variability, and application for climate[J]. Dynamics of Atmospheres and Oceans, 2009, 47(1/3): 3−14.
    [4]
    Sprintall J, Gordon A L, Flament P, et al. Observations of exchange between the South China Sea and the Sulu Sea[J]. Journal of Geophysical Research: Oceans, 2012, 117(C5): C05036.
    [5]
    Cai Shuqun, Liu Hailong, Li Wei, et al. Application of LICOM to the numerical study of the water exchange between the South China Sea and its adjacent oceans[J]. Acta Oceanologica Sinica, 2005, 24(4): 10−19.
    [6]
    Chen H W, Liu C T, Matsuno T, et al. Temporal variations of volume transport through the Taiwan Strait, as identified by three-year measurements[J]. Continental Shelf Research, 2016, 114: 41−53. doi: 10.1016/j.csr.2015.12.010
    [7]
    Wang Yan, Xu Tengfei, Li Shujiang, et al. Seasonal variation of water transport through the Karimata Strait[J]. Acta Oceanologica Sinica, 2019, 38(4): 47−57. doi: 10.1007/s13131-018-1224-2
    [8]
    Susanto R D, Wei Zexun, Adi R T, et al. Observations of the Karimata Strait througflow from December 2007 to November 2008[J]. Acta Oceanologica Sinica, 2013, 32(5): 1−6. doi: 10.1007/s13131-013-0307-3
    [9]
    Rong Zengrui, Liu Yuguang, Zong Haibo, et al. Interannual sea level variability in the South China Sea and its response to ENSO[J]. Global and Planetary Change, 2007, 55(4): 257−272. doi: 10.1016/j.gloplacha.2006.08.001
    [10]
    Wang Hui, Liu Kexiu, Wang Aimei, et al. Regional characteristics of the effects of the El Niño-Southern Oscillation on the sea level in the China Sea[J]. Ocean Dynamics, 2018, 68(4/5): 485−495.
    [11]
    Fang Guohong, Chen Haiying, Wei Zexun, et al. Trends and interannual variability of the South China Sea surface winds, surface height, and surface temperature in the recent decade[J]. Journal of Geophysical Research: Oceans, 2006, 111(C11): C11S16.
    [12]
    Cheng Yongcun, Hamlington B D, Plag H P, et al. Influence of ENSO on the variation of annual sea level cycle in the South China Sea[J]. Ocean Engineering, 2016, 126: 343−352. doi: 10.1016/j.oceaneng.2016.09.019
    [13]
    Soumya M, Vethamony P, Tkalich P. Inter-annual sea level variability in the southern South China Sea[J]. Global and Planetary Change, 2015, 133: 17−26. doi: 10.1016/j.gloplacha.2015.07.003
    [14]
    Qiu Bo, Chen Shuiming. Interannual-to-decadal variability in the bifurcation of the North Equatorial Current off the Philippines[J]. Journal of Physical Oceanography, 2010, 40(11): 2525−2538. doi: 10.1175/2010JPO4462.1
    [15]
    Qu Tangdong, Kim Y Y, Yaremchuk M, et al. Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea?[J]. Journal of Climate, 2004, 17(18): 3644−3657. doi: 10.1175/1520-0442(2004)017<3644:CLSTPA>2.0.CO;2
    [16]
    Liu Qinyan, Huang Ruixin, Wang Dongxiao, et al. Interplay between the Indonesian throughflow and the South China Sea throughflow[J]. Chinese Science Bulletin, 2006, 51(S2): 50−58. doi: 10.1007/s11434-006-9050-x
    [17]
    Liu Qinyan, Feng Ming, Wang Dongxiao. ENSO-induced interannual variability in the southeastern South China Sea[J]. Journal of Oceanography, 2011, 67(1): 127−133. doi: 10.1007/s10872-011-0002-y
    [18]
    Zhuang Wei, Qiu Bo, Du Yan. Low-frequency western Pacific Ocean sea level and circulation changes due to the connectivity of the Philippine Archipelago[J]. Journal of Geophysical Research: Oceans, 2013, 118(12): 6759−6773. doi: 10.1002/2013JC009376
    [19]
    Ashok K, Behera S K, Rao S A, et al. El Niño Modoki and its possible teleconnection[J]. Journal of Geophysical Research: Oceans, 2007, 112(C11): C11007. doi: 10.1029/2006JC003798
    [20]
    Yu Jinyi, Kao H Y. Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958-2001[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D13): D13106.
    [21]
    Larkin N K, Harrison D E. Global seasonal temperature and precipitation anomalies during El Niño autumn and winter[J]. Geophysical Research Letters, 2005, 32(16): L16075.
    [22]
    Kug J S, Jin Feifei, An S I. Two types of El Niño events: cold tongue El Niño and warm pool El Niño[J]. Journal of Climate, 2009, 22(6): 1499−1515. doi: 10.1175/2008JCLI2624.1
    [23]
    Kao H Y, Yu Jinyi. Contrasting eastern-Pacific and central-Pacific types of ENSO[J]. Journal of Climate, 2009, 22(3): 615−632. doi: 10.1175/2008JCLI2309.1
    [24]
    Yeh S W, Kug J S, Dewitte B, et al. El Niño in a changing climate[J]. Nature, 2009, 461(7263): 511−514. doi: 10.1038/nature08316
    [25]
    Lee T, McPhaden M J. Increasing intensity of El Niño in the central-equatorial Pacific[J]. Geophysical Research Letters, 2010, 37(14): L14603.
    [26]
    Weng Hengyi, Ashok K, Behera S K, et al. Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer[J]. Climate Dynamics, 2007, 29(2/3): 113−129.
    [27]
    Kim J S, Zhou Wen, Wang Xin, et al. El Niño Modoki and the summer precipitation variability over South Korea: a diagnostic study[J]. Journal of the Meteorological Society of Japan, 2012, 90: 673−684. doi: 10.2151/jmsj.2012-507
    [28]
    Wang Xin, Zhou Wen, Li Chongyin, et al. Comparison of the impact of two types of El Niño on tropical cyclone genesis over the South China Sea[J]. International Journal of Climatology, 2014, 34(8): 2651−2660. doi: 10.1002/joc.3865
    [29]
    Liu Qinyan, Wang Dongxiao, Wang Xin, et al. Thermal variations in the South China Sea associated with the eastern and central Pacific El Niño events and their mechanisms[J]. Journal of Geophysical Research: Oceans, 2014, 119(12): 8955−8972. doi: 10.1002/2014JC010429
    [30]
    Hong C C, Li Y H, Li T, et al. Impacts of central Pacific and eastern Pacific El Niños on tropical cyclone tracks over the western North Pacific[J]. Geophysical Research Letters, 2011, 38(16): L16712.
    [31]
    Balmaseda M A, Mogensen K, Weaver A T. Evaluation of the ECMWF ocean reanalysis system ORAS4[J]. Quarterly Journal of the Royal Meteorological Society, 2013, 139(674): 1132−1161. doi: 10.1002/qj.2063
    [32]
    Balmaseda M A, Trenberth K E, Källén E. Distinctive climate signals in reanalysis of global ocean heat content[J]. Geophysical Research Letters, 2013, 40(9): 1754−1759. doi: 10.1002/grl.50382
    [33]
    Carton J A, Giese B S. A reanalysis of ocean climate using simple ocean data assimilation (SODA)[J]. Monthly Weather Review, 2008, 136(8): 2999−3017. doi: 10.1175/2007MWR1978.1
    [34]
    Rayner N A, Parker D E, Horton E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D14): 4407. doi: 10.1029/2002JD002670
    [35]
    Wang Chunzai, Wang Xin. Classifying El Niño Modoki I and II by different impacts on rainfall in Southern China and typhoon tracks[J]. Journal of Climate, 2013, 26(4): 1322−1338. doi: 10.1175/JCLI-D-12-00107.1
    [36]
    Fang Guohong, Susanto R D, Wirasantosa S, et al. Volume, heat, and freshwater transports from the South China Sea to Indonesian seas in the boreal winter of 2007-2008[J]. Journal of Geophysical Research: Oceans, 2010, 115(C12): C12020. doi: 10.1029/2010JC006225
    [37]
    Fang Guohong, Wang Yonggang, Wei Zexun, et al. Interocean circulation and heat and freshwater budgets of the South China Sea based on a numerical model[J]. Dynamics of Atmospheres and Oceans, 2009, 47(1/3): 55−72.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (788) PDF downloads(119) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return