Citation: | Chen Sheng,Tao Chunhui,Zhou Jianping, et al. The distribution characteristics of hydrothermal plume in mid-ocean ridge and its indicative role in polymetallic sulfide prospecting[J]. Haiyang Xuebao,2019, 41(8):1–12,doi:10.3969/j.issn.0253−4193.2019.08.001 |
[1] |
Hasenclever J, Theissen-Krah S, Rüpke L H, et al. Hybrid shallow on-axis and deep off-axis hydrothermal circulation at fast-spreading ridges[J]. Nature, 2014, 508(7497): 508−512. doi: 10.1038/nature13174
|
[2] |
Lupton J E, Craig H. A major helium-3 source at 15°S on the East Pacific Rise[J]. Science, 1981, 214(4516): 13−18. doi: 10.1126/science.214.4516.13
|
[3] |
Baker E T, Resing J A, Haymon R M, et al. How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of hydrothermal discharge locations[J]. Earth and Planetary Science Letters, 2016, 449: 186−196. doi: 10.1016/j.jpgl.2016.05.031
|
[4] |
Baker E T. Exploring the ocean for hydrothermal venting: new techniques, new discoveries, new insights[J]. Ore Geology Reviews, 2017, 86: 55−69. doi: 10.1016/j.oregeorev.2017.02.006
|
[5] |
Beaulieu S E, Baker E T, German C R. Where are the undiscovered hydrothermal vents on oceanic spreading ridges?[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 121: 202−212. doi: 10.1016/j.dsr2.2015.05.001
|
[6] |
Beaulieu S E. InterRidge global database of active submarine hydrothermal vent fields, version 3.4[DB/OL]. [2016–10–13] http://vents-data.interridge.org/about_the_database#Version3.
|
[7] |
Baker E T, German C R. On the global distribution of hydrothermal vent fields[M]//German C R, Lin J, Parson L M. Mid-Ocean Ridges: Hydrothermal Interactions between the Lithosphere and Oceans, Geophysical Monograph Series. Washington, D. C.: AGU, 2004, 148: 245-266.
|
[8] |
German C R, von Damm K L. Hydrothermal process[M]//Holland H D, Turekian K K. Treatise on Geochemistry. Amsterdam: Elsevier, 2014: 181–222.
|
[9] |
Resing J A, Sedwick P N, German C R, et al. Basin-scale transport of hydrothermal dissolved metals across the south Pacific Ocean[J]. Nature, 2015, 523(7559): 200−203. doi: 10.1038/nature14577
|
[10] |
German C R, Legendre L L, Sander S G, et al. Hydrothermal Fe cycling and deep ocean organic carbon scavenging: model-based evidence for significant POC supply to seafloor sediments[J]. Earth and Planetary Science Letters, 2015, 419: 143−153. doi: 10.1016/j.jpgl.2015.03.012
|
[11] |
German C R, Petersen S, Hannington M D. Hydrothermal exploration of mid-ocean ridges: where might the largest sulfide deposits be forming?[J]. Chemical Geology, 2016, 420: 114−126. doi: 10.1016/j.chemgeo.2015.11.006
|
[12] |
侯增谦. 现代与古代海底热水成矿作用[M]. 北京: 地质出版社, 2003.
Hou Zengqian. Hydrothermal Systems and Metallogeny on the Modern and Ancient Sea-Floor[M]. Beijing: Geological Publishing House, 2003.
|
[13] |
曾志刚. 海底热液地质学[M]. 北京: 科学出版社, 2011.
Zeng Zhigang. Submarine Hydrothermal Geology[M]. Beijing: Science Press, 2011.
|
[14] |
陶春辉. 洋中脊多金属硫化物勘查方法与技术[M]. 北京: 科学出版社, 2018.
Tao Chunhui. Exploration Methods and Techniques for Polymetallic Sulfide on the Mid-Ocean Ridge[M]. Beijing: Science Press, 2018.
|
[15] |
叶俊. 西南印度洋超慢速扩张脊49.6°E热液区多金属硫化物成矿作用研究[D]. 北京: 中国科学院大学, 2012.
Ye Jun. Mineralization of polymetallic sulfides on ultra-slow spreading southwest Indian ridge at 49.6°E[D]. Beijing: University of Chinese Academy of Sciences, 2012.
|
[16] |
吴世迎. 世界海底热液硫化物资源[M]. 北京: 海洋出版社, 2000.
Wu Shiying. World Submarine Hydrothermal Sulfide Resources[M]. Beijing: China Ocean Press, 2000.
|
[17] |
李军. 现代海底热液块状硫化物矿床的资源潜力评价[J]. 海洋地质动态, 2007, 23(6): 23−30. doi: 10.3969/j.issn.1009-2722.2007.06.006
Li Jun. Assessment of potential resources of modern submarine hydrothermal massive sulfide deposits[J]. Marine Geology Letters, 2007, 23(6): 23−30. doi: 10.3969/j.issn.1009-2722.2007.06.006
|
[18] |
Hannington M, Jamieson J, Monecke T, et al. The abundance of seafloor massive sulfide deposits[J]. Geology, 2011, 39(12): 1155−1158. doi: 10.1130/G32468.1
|
[19] |
Fouquet Y, Marcoux E. Lead isotope systematics in Pacific hydrothermal sulfide deposits[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B4): 6025−6040. doi: 10.1029/94JB02646
|
[20] |
Gamo T, Chiba H, Yamanaka T, et al. Chemical characteristics of newly discovered black smoker fluids and associated hydrothermal plumes at the Rodriguez Triple Junction, Central Indian Ridge[J]. Earth and Planetary Science Letters, 2001, 193(3/4): 371−379.
|
[21] |
Petersen S, Kuhn K, Kuhn T, et al. The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14° 45′ N, Mid-Atlantic Ridge) and its influence on massive sulfide formation[J]. Lithos, 2009, 112(1/2): 40−56.
|
[22] |
Cherkashov G, Poroshina I, Stepanova T, et al. Seafloor massive sulfides from the northern equatorial Mid-Atlantic Ridge: new discoveries and perspectives[J]. Marine Georesources & Geotechnology, 2010, 28(3): 222−239.
|
[23] |
Buschette M J, Piercey S J. Hydrothermal alteration and lithogeochemistry of the boundary volcanogenic massive sulphide deposit, central Newfoundland, Canada[J]. Canadian Journal of Earth Sciences, 2016, 53(5): 506−527. doi: 10.1139/cjes-2015-0237
|
[24] |
Tao Chunhui, Li Huaiming, Jin Xiaobing, et al. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge[J]. Chinese Science Bulletin, 2014, 59(19): 2266−2276. doi: 10.1007/s11434-014-0182-0
|
[25] |
Rona P A, Bemis K G, Xu Guangyu, et al. Estimations of heat transfer from Grotto’s north tower: a NEPTUNE Observatory case study[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 121: 95−111. doi: 10.1016/j.dsr2.2015.05.010
|
[26] |
Tivey M A, Dyment J R M. The magnetic signature of hydrothermal systems in slow spreading environments[M]//Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington, D. C. : AGU, 2010, 188: 43-66.
|
[27] |
Lupton J E, Delaney J R, Johnson H P, et al. Entrainment and vertical transport of deep-ocean water by buoyant hydrothermal plumes[J]. Nature, 1985, 316(6029): 621−623. doi: 10.1038/316621a0
|
[28] |
Gamo T, Masuda H, Yamanaka T, et al. Discovery of a new hydrothermal venting site in the southernmost Mariana Arc: Al-rich hydrothermal plumes and white smoker activity associated with biogenic methane[J]. Geochemical Journal, 2004, 38(6): 527−534. doi: 10.2343/geochemj.38.527
|
[29] |
王晓媛, 武力, 曾志刚, 等. 海底热液柱温度异常自动化计算方法探讨[J]. 海洋学报, 2012, 34(2): 185−191.
Wang Xiaoyuan, Wu Li, Zeng Zhigang, et al. Automatic calculation on the temperature anomaly of a marine hydrothermal plume[J]. Haiyang Xuebao, 2012, 34(2): 185−191.
|
[30] |
Baker E T, Milburn H B. MAPR: a new instrument for hydrothermal plume mapping[J]. Ridge Events, 1997, 8: 23−25.
|
[31] |
Chin C S, Coale K H, Elrod V A, et al. In situ observations of dissolved iron and manganese in hydrothermal vent plumes, Juan de Fuca Ridge[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B3): 4969−4984. doi: 10.1029/93JB02036
|
[32] |
Charlou J L, Rona P, Bougault H. Methane anomalies over TAG hydrothermal field on Mid Atlantic Ridge[J]. Journal of Marine Research, 1987, 45(2): 461−472. doi: 10.1357/002224087788401179
|
[33] |
陈升. 洋中脊热液羽状流找矿标志研究[D]. 长春: 吉林大学, 2016.
Chen Sheng. The study of hydrothermal plume ore-prospecting criteria on the mid-ocean ridges[D]. Changchun: Jilin University, 2016.
|
[34] |
Chen Yongshun, Lin Jian. High sensitivity of ocean ridge thermal structure to changes in magma supply: the Galapagos Spreading Center[J]. Earth and Planetary Science Letters, 2004, 221(1/4): 263−273.
|
[35] |
Baker E T, Chen Y J, Morgan J P. The relationship between near-axis hydrothermal cooling and the spreading rate of mid-ocean ridges[J]. Earth and Planetary Science Letters, 1996, 142(1/2): 137−145.
|
[36] |
Dick H J B, Lin Jian, Schouten H. An ultraslow-spreading class of ocean ridge[J]. Nature, 2003, 426(6965): 405−412. doi: 10.1038/nature02128
|
[37] |
杨作升, 范德江, 李云海, 等. 热液羽状流研究进展[J]. 地球科学进展, 2006, 21(10): 999−1007. doi: 10.3321/j.issn:1001-8166.2006.10.002
Yang Zuosheng, Fan Dejiang, Li Yunhai, et al. Advances in hydrothermal plumes study[J]. Advances in Earth Science, 2006, 21(10): 999−1007. doi: 10.3321/j.issn:1001-8166.2006.10.002
|
[38] |
Kelley D S, Delaney J R, Juniper S K. Establishing a new era of submarine volcanic observatories: cabling Axial Seamount and the Endeavour Segment of the Juan de Fuca Ridge[J]. Marine Geology, 2014, 352: 426−450. doi: 10.1016/j.margeo.2014.03.010
|
[39] |
Tivey M K. Generation of seafloor hydrothermal vent fluids and associated mineral deposits[J]. Oceanography, 2007, 20(1): 50−65. doi: 10.5670/oceanog
|
[40] |
Warren B A. Transpacific hydrographic sections at Lats. 43°S and 28°S: the SCORPIO expedition-II. Deep water[J]. Deep Sea Research and Oceanographic Abstracts, 1973, 20(1): 9−38. doi: 10.1016/0011-7471(73)90040-5
|
[41] |
Tao Chunhui, Chen Sheng, Baker E T, et al. Hydrothermal plume mapping as a prospecting tool for seafloor sulfide deposits: a case study at the Zouyu-1 and Zouyu-2 hydrothermal fields in the southern Mid-Atlantic Ridge[J]. Marine Geophysical Research, 2017, 38(1/2): 3−16.
|
[42] |
Coogan L A, Attar A, Mihaly S F, et al. Near-vent chemical processes in a hydrothermal plume: Insights from an integrated study of the Endeavour segment[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(4): 1641−1660. doi: 10.1002/2016GC006747
|
[43] |
Ray D, Kamesh Raju K A, Baker E T, et al. Hydrothermal plumes over the Carlsberg Ridge, Indian Ocean[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(1): Q01009.
|
[44] |
Han C, Wu G, Ye Y, et al. Active hydrothermal and non-active massive sulfide mound investigation using a new multi-parameter chemical sensor[C]//Testing and Measurement: Techniques and Applications. Proceedings of the 2015 International Conference on Testing and Measurement: Techniques and Applications (TMTA 2015). AGU, 2015: 183–186.
|
[45] |
Fitzsimmons J N, John S G, Marsay C M, et al. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange[J]. Nature Geoscience, 2017, 10(3): 195−201. doi: 10.1038/ngeo2900
|
[46] |
Sander S G, Koschinsky A. Metal flux from hydrothermal vents increased by organic complexation[J]. Nature Geoscience, 2011, 4(3): 145−150. doi: 10.1038/ngeo1088
|
[47] |
Charlou J L, Donval J P. Hydrothermal methane venting between 12°N and 26°N along the Mid-Atlantic Ridge[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B6): 9625−9642. doi: 10.1029/92JB02047
|
[48] |
You O R, Son S K, Baker E T, et al. Bathymetric influence on dissolved methane in hydrothermal plumes revealed by concentration and stable carbon isotope measurements at newly discovered venting sites on the central Indian Ridge (11–13 S)[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2014, 91: 17−26. doi: 10.1016/j.dsr.2014.05.011
|
[49] |
Sudarikov S M, Roumiantsev A B. Structure of hydrothermal plumes at the Logatchev vent field, 14°45′N, Mid-Atlantic Ridge: evidence from geochemical and geophysical data[J]. Journal of Volcanology and Geothermal Research, 2000, 101(3/4): 245−252.
|
[50] |
German C R, Yoerger D R, Jakuba M, et al. Hydrothermal exploration by AUV: progress to-date with ABE in the Pacific, Atlantic & Indian Oceans[C]//2008 IEEE/OES Autonomous Underwater Vehicles. Woods Hole, MA, USA: IEEE, 2008: 1–5.
|
[51] |
Stranne C, Sohn R A, Liljebladh B, et al. Analysis and modeling of hydrothermal plume data acquired from the 85°E segment of the Gakkel Ridge[J]. Journal of Geophysical Research: Oceans, 2010, 115(C6): C06028.
|
[52] |
Larson B I, Lang S Q, Lilley M D, et al. Stealth export of hydrogen and methane from a low temperature serpentinization system[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 121: 233−245. doi: 10.1016/j.dsr2.2015.05.007
|
[53] |
Son J, Pak S J, Kim J, et al. Tectonic and magmatic control of hydrothermal activity along the slow-spreading central Indian Ridge, 8° S-17° S[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(5): 2011−2020. doi: 10.1002/2013GC005206
|
[54] |
Bemis K G, Silver D, Xu Guangyu, et al. The path to COVIS: a review of acoustic imaging of hydrothermal flow regimes[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 121: 159−176. doi: 10.1016/j.dsr2.2015.06.002
|
[55] |
Xu Guangyu, Jackson D R, Bemis K G, et al. Long-term, quantitative observations of seafloor hydrothermal venting using an imaging sonar[J]. The Journal of the Acoustical Society of America, 2017, 142(4): 2504.
|
[56] |
Rona P A, Bemis K G, Silver D, et al. Acoustic imaging, visualization, and quantification of buoyant hydrothermal plumes in the ocean[J]. Marine Geophysical Researches, 2002, 23(2): 147−168. doi: 10.1023/A:1022481315125
|
[57] |
Morton B R, Taylor G I, Turner J S. Turbulent gravitational convection from maintained and instantaneous sources[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1956, 234(1196): 1−23. doi: 10.1098/rspa.1956.0011
|
[58] |
Turner J S, Campbell I H. A laboratory and theoretical study of the growth of “black smoker” chimneys[J]. Earth and Planetary Science Letters, 1987, 82(1/2): 36−48.
|
[59] |
Tyler P A, Young C M. Dispersal at hydrothermal vents: a summary of recent progress[J]. Hydrobiologia, 2003, 503(1/3): 9−19.
|
[60] |
李江海, 牛向龙, 冯军. 海底黑烟囱的识别研究及其科学意义[J]. 地球科学进展, 2004, 19(1): 17−25. doi: 10.3321/j.issn:1001-8166.2004.01.003
Li Jianghai, Niu Xianglong, Feng Jun. The identification of the fossil black smoker chimney and it’s implication for scientific research[J]. Advance in Earth Sciences, 2004, 19(1): 17−25. doi: 10.3321/j.issn:1001-8166.2004.01.003
|
[61] |
栾锡武, 赵一阳, 秦蕴珊. 热液柱的形态研究[J]. 热带海洋学报, 2002, 21(2): 91−97. doi: 10.3969/j.issn.1009-5470.2002.02.011
Luan Xiwu, Zhao Yiyang, Qin Yunshan. A study on shape of hydrothermal plume[J]. Journal of Tropical Oceanography, 2002, 21(2): 91−97. doi: 10.3969/j.issn.1009-5470.2002.02.011
|
[62] |
夏建新, 韩凝, 任华堂. 深海热液活动环境场参数及模型分析[J]. 地学前缘, 2009, 16(6): 48−54. doi: 10.3321/j.issn:1005-2321.2009.06.005
Xia Jianxin, Han Ning, Ren Huatang. Parameters and model analysis for the deep-sea hydrothermal plume[J]. Earth Science Frontiers, 2009, 16(6): 48−54. doi: 10.3321/j.issn:1005-2321.2009.06.005
|
[63] |
German C R, Richards K J, Rudnicki M D, et al. Topographic control of a dispersing hydrothermal plume[J]. Earth and Planetary Science Letters, 1998, 156(3/4): 267−273.
|
[64] |
Goodman J C, Collins G C, Marshall J, et al. Hydrothermal plume dynamics on Europa: implications for chaos formation[J]. Journal of Geophysical Research: Planets, 2004, 109(E3): E03008.
|
[65] |
Wichers S. Verification of numerical models for hydrothermal plume water through field measurements at TAG[D]. Cambridge, MA: Massachusetts Institute of Technology, 2005.
|
[66] |
Hoshino K, Yamamoto Y, Gu Xiangping, et al. Preliminary examinations of the ore-forming process by fluid mixing-a test of MIX99[J]. Resource Geology, 2000, 50(3): 185−190. doi: 10.1111/rge.2000.50.issue-3
|
[67] |
张巍, 赵亮, 贺治国, 等. 线性层结盐水中的羽流运动特性[J]. 水科学进展, 2016, 27(4): 602−608.
Zhang Wei, Zhao Liang, He Zhiguo, et al. Characteristics of plumes in linearly stratified salt-water[J]. Advances in Water Science, 2016, 27(4): 602−608.
|
[68] |
Jiang Houshou, Breier J A. Physical controls on mixing and transport within rising submarine hydrothermal plumes: a numerical simulation study[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2014, 92: 41−55. doi: 10.1016/j.dsr.2014.06.006
|
[69] |
Baker E T, Hémond C, Briais A, et al. Correlated patterns in hydrothermal plume distribution and apparent magmatic budget along 2500 km of the southeast Indian Ridge[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(8): 3198−3211. doi: 10.1002/2014GC005344
|
[70] |
Francheteau J, Ballard R D. The East Pacific Rise near 21°N, 13°N and 20°S: inferences for along-strike variability of axial processes of the mid-ocean ridge[J]. Earth and Planetary Science Letters, 1983, 64(1): 93−116. doi: 10.1016/0012-821X(83)90055-9
|
[71] |
Baker E T, German C R, Elderfield H. Hydrothermal plumes over spreading-center axes: global distributions and geological inferences[M]//Humphris S E, Zierenberg R A, Mullineaux L S, et al. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Geophysical Monograph Series. Washington, D. C. : AGU, 1995, 91: 47–71.
|
[72] |
German C R, Parson L M. Distributions of hydrothermal activity along the Mid-Atlantic Ridge: interplay of magmatic and tectonic controls[J]. Earth and Planetary Science Letters, 1998, 160(3/4): 327−341.
|
[73] |
Baker E T. Relationships between hydrothermal activity and axial magma chamber distribution, depth, and melt content[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(6): Q06009.
|
[74] |
Fisher A T, Becker K. Channelized fluid flow in oceanic crust reconciles heat-flow and permeability data[J]. Nature, 2000, 403(6765): 71−74. doi: 10.1038/47463
|
[75] |
Haymon R M, White S M. Fine-scale segmentation of volcanic/hydrothermal systems along fast-spreading ridge crests[J]. Earth and Planetary Science Letters, 2004, 226(3/4): 367−382.
|
[76] |
Auzende J M, Ballu V, Batiza R, et al. Recent tectonic, magmatic, and hydrothermal activity on the East Pacific Rise between 17° S and 19° S: submersible observations[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B8): 17995−18010. doi: 10.1029/96JB01209
|