Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Qian Hongbao, Huang Xiaodong, Tian Jiwei. Observational study of one prototypical mode-2 internal solitary waves in the northern South China Sea[J]. Haiyang Xuebao, 2016, 38(9): 13-20. doi: 10.3969/j.issn.0253-4193.2016.09.002
Citation: Qian Hongbao, Huang Xiaodong, Tian Jiwei. Observational study of one prototypical mode-2 internal solitary waves in the northern South China Sea[J]. Haiyang Xuebao, 2016, 38(9): 13-20. doi: 10.3969/j.issn.0253-4193.2016.09.002

Observational study of one prototypical mode-2 internal solitary waves in the northern South China Sea

doi: 10.3969/j.issn.0253-4193.2016.09.002
  • Received Date: 2016-04-26
  • Rev Recd Date: 2016-05-13
  • Mode-2 internal solitary wave (ISW) is seldom observed in real oceans. In this study, the characteristics of one prototypical mode-2 ISW over the continental shelf of northern South China (SCS) were analyzed, by using of mooring measurements with fine spatial and temporal resolutions. It was shown that the current core of mode-2 ISW appeared at a depth of 135 m, with a maximum of 0.66 m/s. The currents along the ISW propagation direction covered a depth range of 80~170 m, and the currents at a reverse direction were observed near the surface and bottom. Vertical mode analysis revealed that observed vertical structure of horizontal current of ISWs matched well with the theoretical results. At the trough of mode-2 ISW, the depth-integrated horizontal kinetic energy (KE) density could reach 14 kJ/m2. Along the wave front, the KE of mode-2 ISW was up to 5.98 MJ/m. Although the kinetic energy of the mode-2 ISW was one order smaller than that of strong mode-1 ISW, its current shear of up to 0.045 s-1 was two times as strong as that of mode-1 ISW, which suggested a more rapid energy dissipation.
  • loading
  • Konyaev K V, Sabinin K D, Serebryany A N. Large-amplitude internal waves at the Mascarene Ridge in the Indian Ocean[J]. Deep-Sea Res Ⅰ, 1995, 42(11/12): 2075-2091.
    Shroyer E L, Moum J N, Nash J D. Mode 2 waves on the continental shelf: Ephemeral components of the nonlinear internal wavefield[J]. Journal of Geophysical Research, 2010, 115(C7): 1-12.
    Yang Y J, Tang T Y, Chang M H, et al. Solitons Northeast of Tung-Sha Island during the ASIAEX Pilot Studies[J]. Journal of Oceanic Engineering, 2004, 29(4): 1182-1199.
    Yang Y J, Fang Y C, Chang M-H et al. Observations of second baroclinic mode internal solitary waves on the continental slope of the northern South China Sea[J]. Journal of Geophysical Research, 2009, 114(C10): 1-15.
    Ramp S R, Yang Y J, Reeder D B, et al. Observations of a mode-2 nonlinear internal wave on the northern Heng-Chun Ridge south of Taiwan[J]. Journal of Geophysical Research, 2012, 117(C3): 1-11.
    Cai S, Xie J, He J. An overview of internal solitary waves in the South China Sea[J]. Surveys in Geophysics, 2012, 33(5): 927-943.
    Alford M H, Peacock T, MacKinnon J A, et al. The formation and fate of internal waves in the South China Sea[J]. Nature, 2015, 521(7550): 65-69.
    蔡树群, 何建玲, 谢皆烁. 近10年来南海孤立内波的研究进展[J]. 地球科学进展, 2011, 26(7): 703-710. Cai Shuqun, He Jianling, Xie Jieshuo. Recent decadal progress of the study on internal solitons in the South China Sea[J]. Adcances in Earth Science,2011, 26(7): 703-710.
    Chen Zhi-wu, Xie Jieshuo, Wang Dongxiao, et al. Density stratification influences on generation of different modes internal solitary waves[J]. Journal of Geophysical Research, 2014, 119(10): 7029-7046.
    Xie J, Pan J, Jay D A. Multimodal internal waves generated over a Subcritical Ridge: impact of the upper-ocean stratification[J]. Journal of Geophysical Research, 2015, 45(3): 904-926.
    Vlasenko V, Stashchuk N, Guo C, et al. Multimodal structure of baroclinic tides in the South China Sea[J]. Nonlinear Processes in Geophysics, 2010, 17(5): 529-543.
    Qian H, Huang X, Tian J, et al. Shoaling of the internal solitary waves over the continental shelf of the northern South China Sea[J].Acta Oceanologica Sinica, 2015, 34(9): 35-42.
    Zhao W, Huang X, Tian J. A new method to estimate phase speed and vertical velocity of internal solitary waves in the South China Sea[J]. Journal of Oceanography, 2012, 68(5): 761-769.
    Alford M H, Lien R-C, Simmons H, et al. Speed and evolution of nonlinear internal waves transiting the South China Sea[J]. Journal of Physical Oceanography, 2010, 40(6): 1338-1355.
    Klymak J M, Pinkel R, Liu C-T, et al. Prototypical solitons in the South China Sea[J]. Geophysical Research Letter, 2006, 33(11): 1-4.
    Helfrich K R, Melville W. On long nonlinear internal waves over slope-shelf topography[J]. Journal of Fluid Mechanics, 1986, 167:285-308.
    Vlasenko V, Hutter K. Generation of second mode solitary waves by the interaction of a first mode soliton with a sill[J]. Nonlinear Processes in Geophysics, 2001, 8(4/5): 223-239.
    Chao S Y, Shaw P T, Hsu M K, et al. Reflection and diffraction of internal solitary waves by a circular island[J]. Journal of Oceanography, 2006, 62(6): 811-823.
    Stastna M, Peltier W. On the resonant generation of large-amplitude internal solitary and solitary-like waves[J]. Journal of Fluid Mechanics, 2005, 543(1): 267-292.
    Mehta A, Sutherland B, Kyba P. Interfacial gravity currents. Ⅱ. Wave excitation[J]. Physics of Fluids, 2002, 14(7):3558-3569.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1224) PDF downloads(1084) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return