Citation: | Cheng Lingqiao,Gao Zhaoquan,Kitade Yujiro, et al. Export pathway of Vincennes Bay Bottom Water and its contribution rate in the Antarctic Bottom Water layer[J]. Haiyang Xuebao,2025, 47(3):1–12 doi: 10.12284/hyxb2025019 |
[1] |
Speer K, Rintoul S R, Sloyan B. The diabatic deacon cell[J]. Journal of Physical Oceanography, 2000, 30(12): 3212−3222. doi: 10.1175/1520-0485(2000)030<3212:TDDC>2.0.CO;2
|
[2] |
Foldvik A, Gammelsrød T, Østerhus S, et al. Ice shelf water overflow and bottom water formation in the southern Weddell Sea[J]. Journal of Geophysical Research: Oceans, 2004, 109(C2): C02015.
|
[3] |
Gill A E. Circulation and bottom water production in the Weddell Sea[J]. Deep Sea Research and Oceanographic Abstracts, 1973, 20(2): 111−140. doi: 10.1016/0011-7471(73)90048-X
|
[4] |
Jacobs S S, Amos A F, Bruchhausen P M. Ross sea oceanography and Antarctic bottom water formation[J]. Deep Sea Research and Oceanographic Abstracts, 1970, 17(6): 935−962. doi: 10.1016/0011-7471(70)90046-X
|
[5] |
Carmack E C. Water characteristics of the Southern Ocean south of the polar front[M]//Angel M. A Vouage of Discovery, Deacon 70th Anniversary Volume. Oxford: Pergam on Press, 1977.
|
[6] |
Gordon A L, Tchernia P L. Waters of the continental margin off Adélie coast, Antarctica[M]//Hayes D E. Antarctica Oceanology II: The Australian-New Zealand Sector. Washington: American Geophysical Union, 1978: 59−69.
|
[7] |
Rintoul S R. On the origin and influence of Adélie Land Bottom Water[M]//Jacobs S S, Weiss R F. Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin 75. Washington: American Geophysical Union, 1985: 151−171.
|
[8] |
Williams G D, Aoki S, Jacobs S S, et al. Antarctic bottom water from the Adélie and George V Land coast, East Antarctica (140°−149°E)[J]. Journal of Geophysical Research: Oceans, 2010, 115(C4): C04027.
|
[9] |
Ohshima K I, Fukamachi Y, Williams G D, et al. Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya[J]. Nature Geoscience, 2013, 6(3): 235−240. doi: 10.1038/ngeo1738
|
[10] |
Orsi A H, Jacobs S S, Gordon A L, et al. Cooling and ventilating the abyssal ocean[J]. Geophysical Research Letters, 2001, 28(15): 2923−2926. doi: 10.1029/2001GL012830
|
[11] |
Williams G D, Bindoff N L, Marsland S J, et al. Formation and export of dense shelf water from the Adélie Depression, East Antarctica[J]. Journal of Geophysical Research: Oceans, 2008, 113(C4): C04039.
|
[12] |
Williams G D, Hindell M, Houssais M N, et al. Upper ocean stratification and sea ice growth rates during the summer-fall transition, as revealed by Elephant seal foraging in the Adélie Depression, East Antarctica[J]. Ocean Science, 2011, 7(2): 185−202. doi: 10.5194/os-7-185-2011
|
[13] |
Bindoff N L, Rosenberg M A, Warner M J. On the circulation and water masses over the Antarctic continental slope and rise between 80 and 150°E[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2000, 47(12/13): 2299−2326.
|
[14] |
Budillon G, Spezie G. Thermohaline structure and variability in the Terra Nova Bay polynya, Ross Sea[J]. Antarctic Science, 2000, 12(4): 493−508. doi: 10.1017/S0954102000000572
|
[15] |
Kitade Y, Shimada K, Tamura T, et al. Antarctic bottom water production from the Vincennes bay Polynya, East Antarctica[J]. Geophysical Research Letters, 2014, 41(10): 3528−3534. doi: 10.1002/2014GL059971
|
[16] |
Tamura T, Ohshima K I, Fraser A D, et al. Sea ice production variability in Antarctic coastal polynyas[J]. Journal of Geophysical Research: Oceans, 2016, 121(5): 2967−2979. doi: 10.1002/2015JC011537
|
[17] |
Ye Wenjun, Cheng Lingqiao, Kitade Y, et al. Distribution of modified circumpolar deep water and its threat in Vincennes Bay, East Antarctica[J]. Journal of Oceanology and Limnology, 2024, 42(5): 1399−1414. doi: 10.1007/s00343-024-3164-3
|
[18] |
Orsi A H, Johnson G C, Bullister J L. Circulation, mixing, and production of Antarctic Bottom Water[J]. Progress in Oceanography, 1999, 43(1): 55−109. doi: 10.1016/S0079-6611(99)00004-X
|
[19] |
Aoki S, Rintoul S R, Ushio S, et al. Freshening of the Adélie Land Bottom Water near 140°E[J]. Geophysical Research Letters, 2005, 32(23): L23601.
|
[20] |
Aoki S, Kitade Y, Shimada K, et al. Widespread freshening in the Seasonal Ice Zone near 140°E off the Adélie Land Coast, Antarctica, from 1994 to 2012[J]. Journal of Geophysical Research: Oceans, 2013, 118(11): 6046−6063. doi: 10.1002/2013JC009009
|
[21] |
Rintoul S R. Rapid freshening of Antarctic Bottom Water formed in the Indian and Pacific oceans[J]. Geophysical Research Letters, 2007, 34(6): L06606.
|
[22] |
Purkey S G, Johnson G C. Global contraction of Antarctic bottom water between the 1980s and 2000s[J]. Journal of Climate, 2012, 25(17): 5830−5844. doi: 10.1175/JCLI-D-11-00612.1
|
[23] |
van Wijk E M, Rintoul S R. Freshening drives contraction of Antarctic bottom water in the Australian Antarctic Basin[J]. Geophysical Research Letters, 2014, 41(5): 1657−1664. doi: 10.1002/2013GL058921
|
[24] |
Menezes V V, Macdonald A M, Schatzman C. Accelerated freshening of Antarctic Bottom Water over the last decade in the Southern Indian Ocean[J]. Science Advances, 2017, 3(1): e1601426. doi: 10.1126/sciadv.1601426
|
[25] |
Shimada K, Kitade Y, Aoki S, et al. Shoaling of abyssal ventilation in the Eastern Indian Sector of the Southern Ocean[J]. Communications Earth & Environment, 2022, 3(1): 120.
|
[26] |
Shimada K, Aoki S, Ohshima K I, et al. Influence of Ross Sea Bottom Water changes on the warming and freshening of the Antarctic Bottom Water in the Australian-Antarctic Basin[J]. Ocean Science, 2012, 8(4): 419−432. doi: 10.5194/os-8-419-2012
|
[27] |
Katsumata K, Nakano H, Kumamoto Y. Dissolved oxygen change and freshening of Antarctic Bottom water along 62°S in the Australian-Antarctic Basin between 1995/1996 and 2012/2013[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 114: 27−38. doi: 10.1016/j.dsr2.2014.05.016
|
[28] |
Mizobata K, Shimada K, Aoki S, et al. The cyclonic eddy train in the Indian Ocean sector of the Southern Ocean as revealed by satellite radar altimeters and in situ measurements[J]. Journal of Geophysical Research: Oceans, 2020, 125(6): e2019JC015994. doi: 10.1029/2019JC015994
|
[29] |
Nihashi S, Ohshima K I. Circumpolar mapping of Antarctic coastal polynyas and landfast sea ice: relationship and variability[J]. Journal of Climate, 2015, 28(9): 3650−3670. doi: 10.1175/JCLI-D-14-00369.1
|
[30] |
Joyce T M. Introduction to the collection of expert reports compiled for the WHP programme[R]. WHP, 1991.
|
[31] |
Shimada K, Makabe R, Takao S, et al. Physical and chemical oceanographic data during Umitaka-maru cruise of the 58th Japanese Antarctic Research Expedition in January 2017[J]. Polar Data Journal, 2020, 4: 1−29.
|
[32] |
Hood E M, Sabine C L, Sloyan B M. The GO-SHIP repeat hydrography manual: a collection of expert reports and guidelines[R]. IOCCP Report, 2010.
|
[33] |
Amante C, Eakins B W. ETOPO1 arc-minute global relief model: procedures, data sources and analysis[R]. Boulder: National Oceanic and Atmospheric Administration, 2009.
|
[34] |
Thompson R O R Y, Edwards R J. Mixing and water-mass formation in the Australian Subantarctic[J]. Journal of Physical Oceanography, 1981, 11(10): 1399−1406. doi: 10.1175/1520-0485(1981)011<1399:MAWMFI>2.0.CO;2
|
[35] |
Jackett D R, McDougall T J. A neutral density variable for the world’s oceans[J]. Journal of Physical Oceanography, 1997, 27(2): 237−263. doi: 10.1175/1520-0485(1997)027<0237:ANDVFT>2.0.CO;2
|
[36] |
Tomczak M, Large D G B. Optimum multiparameter analysis of mixing in the thermocline of the eastern Indian Ocean[J]. Journal of Geophysical Research: Oceans, 1989, 94(C11): 16141−16149. doi: 10.1029/JC094iC11p16141
|
[37] |
Yamazaki K, Katsumata K, Hirano D, et al. Revisiting circulation and water masses over the East Antarctic margin (80–150°E)[J]. Progress in Oceanography, 2024, 225: 103285. doi: 10.1016/j.pocean.2024.103285
|
[38] |
Mizuta G, Ohshima K I, Takatsuka T, et al. Circulation and production of Cape Darnley Bottom Water on the continental slope off the Cape Darnley polynya, East Antarctica[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2024, 211: 104362. doi: 10.1016/j.dsr.2024.104362
|
[39] |
Shimada K, Aoki S, Ohshima K I. Creation of a gridded dataset for the Southern Ocean with a topographic constraint scheme[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(3): 511−532. doi: 10.1175/JTECH-D-16-0075.1
|
[40] |
Woods J D, Onken R, Fischer J. Thermohaline intrusions created isopycnically at oceanic fronts are inclined to isopycnals[J]. Nature, 1986, 322(6078): 446−449. doi: 10.1038/322446a0
|
[41] |
Ruddick B, Richards K. Oceanic thermohaline intrusions: observations[J]. Progress in Oceanography, 2003, 56(3/4): 499−527.
|
[42] |
Ruddick B. A practical indicator of the stability of the water column to double-diffusive activity[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1983, 30(10): 1105−1107. doi: 10.1016/0198-0149(83)90063-8
|
[43] |
Shcherbina A Y, Gregg M C, Alford M H, et al. Characterizing thermohaline intrusions in the North Pacific subtropical frontal zone[J]. Journal of Physical Oceanography, 2009, 39(11): 2735−2756. doi: 10.1175/2009JPO4190.1
|