Citation: | Yang Xinrui,Zhao Jiechen,Wang Shizhu, et al. Simulation and projection of Arctic snow ice by the EC-Earth3 climate model[J]. Haiyang Xuebao,2025, 47(2):41–55 doi: 10.12284/hyxb2025003 |
[1] |
Rantanen M, Karpechko A Y, Lipponen A, et al. The Arctic has warmed nearly four times faster than the globe since 1979[J]. Communications Earth & Environment, 2022, 3(1): 168
|
[2] |
Webster M A, Rigor I G, Nghiem S V, et al. Interdecadal changes in snow depth on Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2014, 119(8): 5395−5406. doi: 10.1002/2014JC009985
|
[3] |
Leppäranta M. Freezing of Lakes and the Evolution of Their Ice Cover[M]. Berlin/Heidelberg, Germany: Springer, 2015.
|
[4] |
Moslet P O. Field testing of uniaxial compression strength of columnar sea ice[J]. Cold Regions Science and Technology, 2007, 48(1): 1−14. doi: 10.1016/j.coldregions.2006.08.025
|
[5] |
Fernández-Méndez M, Olsen L M, Kauko H M, et al. Algal hot spots in a changing Arctic Ocean: sea-ice ridges and the snow-ice interface[J]. Frontiers in Marine Science, 2018, 5: 75. doi: 10.3389/fmars.2018.00075
|
[6] |
Haas C, Thomas D N, Bareiss J. Surface properties and processes of perennial Antarctic sea ice in summer[J]. Journal of Glaciology, 2001, 47(159): 613−625. doi: 10.3189/172756501781831864
|
[7] |
Vavrus S J, Wynne R H, Foley J A. Measuring the sensitivity of southern Wisconsin lake ice to climate variations and lake depth using a numerical model[J]. Limnology and Oceanography, 1996, 41(5): 822−831. doi: 10.4319/lo.1996.41.5.0822
|
[8] |
Fichefet T, Maqueda M A M. Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover[J]. Climate Dynamics, 1999, 15(4): 251−268. doi: 10.1007/s003820050280
|
[9] |
Wang Caixin, Cheng Bin, Wang Keguang, et al. Modelling snow ice and superimposed ice on landfast sea ice in Kongsfjorden, Svalbard[J]. Polar Research, 2015, 34(1): 20828. doi: 10.3402/polar.v34.20828
|
[10] |
Ohata Y, Toyota T, Shiraiwa T. Lake ice formation processes and thickness evolution at Lake Abashiri, Hokkaido, Japan[J]. Journal of Glaciology, 2016, 62(233): 563−578. doi: 10.1017/jog.2016.57
|
[11] |
Merkouriadi I, Cheng Bin, Graham R M, et al. Critical role of snow on sea ice growth in the Atlantic sector of the Arctic Ocean[J]. Geophysical Research Letters, 2017, 44(20): 10,479−10,485.
|
[12] |
Perovich D K, Roesler C S, Pegau W S. Variability in Arctic sea ice optical properties[J]. Journal of Geophysical Research: Oceans, 1998, 103(C1): 1193−1208. doi: 10.1029/97JC01614
|
[13] |
Merkouriadi I, Liston G E, Graham R M, et al. Quantifying the potential for snow-ice formation in the Arctic Ocean[J]. Geophysical Research Letters, 2020, 47(4): e2019GL085020. doi: 10.1029/2019GL085020
|
[14] |
Shu Q, Song Z, Qiao F. Assessment of sea ice simulations in the CMIP5 models[J]. The Cryosphere, 2015, 9(1): 399−409. doi: 10.5194/tc-9-399-2015
|
[15] |
Cheng Bin, Launiainen J, Vihma T. Modelling of superimposed ice formation and subsurface melting in the Baltic Sea[J]. Geophysica, 2003, 39(1/2): 31−50.
|
[16] |
Cheng Bin, Zhang Zhanhai, Vihma T, et al. Model experiments on snow and ice thermodynamics in the Arctic Ocean with CHINARE 2003 data[J]. Journal of Geophysical Research: Oceans, 2008, 113(C9): C09020.
|
[17] |
杨清华, 程斌, 雷瑞波, 等. 北极夏季海冰反照率的观测和数值模拟试验[J]. 海洋学报, 2011, 33(2): 42−47.
Yang Qinghua, Cheng Bin, Lei Ruibo, et al. Arctic sea ice albedo in summer: observation and modelling experiments[J]. Haiyang Xuebao, 2011, 33(2): 42−47.
|
[18] |
Zhao Jiechen, Cheng Bin, Vihma T, et al. Observation and thermodynamic modeling of the influence of snow cover on landfast sea ice thickness in Prydz Bay, East Antarctica[J]. Cold Regions Science and Technology, 2019, 168: 102869. doi: 10.1016/j.coldregions.2019.102869
|
[19] |
Döscher R, Acosta M, Alessandri A, et al. The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6[J]. Geoscientific Model Development, 2022, 15(7): 2973−3020. doi: 10.5194/gmd-15-2973-2022
|
[20] |
Docquier D, Massonnet F, Barthélemy A, et al. Relationships between Arctic sea ice drift and strength modelled by NEMO-LIM3.6[J]. The Cryosphere, 2017, 11(6): 2829−2846. doi: 10.5194/tc-11-2829-2017
|
[21] |
Vancoppenolle M, Bouillon S, Fichefet T, et al. The Louvain-la-Neuve sea ice model[J]. Notes du pole de modélisation, Institut Pierre-Simon Laplace (IPSL), Paris, France, 2012, 31.
|
[22] |
Rousset C, Vancoppenolle M, Madec G, et al. The Louvain-La-Neuve sea ice model LIM3.6: global and regional capabilities[J]. Geoscientific Model Development, 2015, 8(10): 2991−3005. doi: 10.5194/gmd-8-2991-2015
|
[23] |
Cheng Bin, Vihma T, Pirazzini R, et al. Modelling of superimposed ice formation during the spring snowmelt period in the Baltic Sea[J]. Annals of Glaciology, 2006, 44: 139−146. doi: 10.3189/172756406781811277
|
[24] |
Gocic M, Trajkovic S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia[J]. Global and Planetary Change, 2013, 100: 172−182. doi: 10.1016/j.gloplacha.2012.10.014
|
[25] |
李瑜洁, 高晓清, 张录军, 等. 近30年北极海冰运动特征分析[J]. 高原气象, 2019, 38(1): 114−123. doi: 10.7522/j.issn.1000-0534.2018.00115
Li Yujie, Gao Xiaoqing, Zhang Lujun, et al. Analysis on the characteristics of arctic sea ice movement in recent 30 years[J]. Plateau Meteorology, 2019, 38(1): 114−123 doi: 10.7522/j.issn.1000-0534.2018.00115
|
[26] |
何琰, 赵进平. 北欧海的锋面分布特征及其季节变化[J]. 地球科学进展, 2011, 26(10): 1079−1091.
He Yan, Zhao Jinping. Distributions and seasonal variations of fronts in GIN seas[J]. Advances in Earth Science, 2011, 26(10): 1079−1091.
|
[27] |
牟龙江, 赵进平. 格陵兰海海冰外缘线变化特征分析[J]. 地球科学进展, 2013, 28(6): 709−717. doi: 10.11867/j.issn.1001-8166.2013.06.0709
Mou Longjiang, Zhao Jinping. Variability of the Greenland Sea ice edge[J]. Advances in Earth Science, 2013, 28(6): 709−717. doi: 10.11867/j.issn.1001-8166.2013.06.0709
|