Citation: | Wang Juncheng,Kong Qinglin,Li Yunzhou, et al. Research progress and prospects of underwater target detection based on buoys[J]. Haiyang Xuebao,2025, 47(2):1–14 doi: 10.12284/hyxb2025001 |
[1] |
吴立新, 陈朝晖, 林霄沛, 等. “透明海洋”立体观测网构建[J]. 科学通报, 2020, 65(25): 2654−2661. doi: 10.1360/TB-2020-0558
Wu Lixin, Chen Zhaohui, Lin Xiaopei, et al. Building the integrated observational network of “Transparent Ocean”[J]. Chinese Science Bulletin, 2020, 65(25): 2654−2661. doi: 10.1360/TB-2020-0558
|
[2] |
段雯娟. “透明海洋”深刻影响中国未来 访中国科学院院士、中国海洋大学教授吴立新[J]. 地球, 2015(7): 10−14.
Duan Wenjuan. “Transparent Ocean” has a profound impact on China’s future visit to Wu Lixin, an academician of the CAS Member and a professor of Ocean University of China[J]. Earth, 2015(7): 10−14.
|
[3] |
沈军宇, 李林燕, 戴永良, 等. 基于YOLO算法的鱼群探测监控系统[J]. 苏州科技大学学报(自然科学版), 2020, 37(3): 68−73.
Shen Junyu, Li Linyan, Dai Yongliang, et al. A fish detecting and monitoring system based on YOLO algorithm[J]. Journal of Suzhou University of Science and Technology (Natural Science), 2020, 37(3): 68−73.
|
[4] |
Cui Suxia, Zhou Yu, Wang Yonghui, et al. Fish detection using deep learning[J]. Applied Computational Intelligence and Soft Computing, 2020, 2020: 3738108.
|
[5] |
Li Xiu, Shang Min, Qin Hongwei, et al. Fast accurate fish detection and recognition of underwater images with Fast R-CNN[C]//Proceedings of the OCEANS 2015-MTS/IEEE Washington. Washington: IEEE, 2015: 1−5.
|
[6] |
Dobeck G J. Algorithm fusion for automated sea mine detection and classification[C]//Proceedings of the MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings. Honolulu: IEEE, 2001: 130−134.
|
[7] |
Aridgides T, Fernandez M F, Dobeck G J. Adaptive clutter suppression and fusion processing string for sea mine detection and classification in sonar imagery[C]//Proceedings of SPIE 3392, Detection and Remediation Technologies for Mines and Minelike Targets Ⅲ. Orlando: SPIE, 1998: 243−254.
|
[8] |
魏志强, 张志强, 蒋俊杰. 浅地层剖面仪在大亚湾海底管道检测中的应用[J]. 海洋测绘, 2009, 29(6): 71−73. doi: 10.3969/j.issn.1671-3044.2009.06.020
Wei Zhiqiang, Zhang Zhiqiang, Jiang Junjie. Application of subbottom profiler in inspecting investigation of daya bay seabed pipeline[J]. Hydrographic Surveying and Charting, 2009, 29(6): 71−73. doi: 10.3969/j.issn.1671-3044.2009.06.020
|
[9] |
Zhang Hongwei, Zhang Shitong, Wang Yanhui, et al. Subsea pipeline leak inspection by autonomous underwater vehicle[J]. Applied Ocean Research, 2021, 107: 102321. doi: 10.1016/j.apor.2020.102321
|
[10] |
马永, 李家彪, 吴自银, 等. 综合物探技术在海洋考古中的应用——以川岛水下考古为例[J]. 海洋学研究, 2016, 34(2): 43−52. doi: 10.3969/j.issn.1001-909X.2016.02.006
Ma Yong, Li Jiabiao, Wu Ziyin, et al. The application of an integrated geophysical prospecting system to underwater archeology-An example from Chuan Island, Guangdong Province[J]. Journal of Marine Sciences, 2016, 34(2): 43−52. doi: 10.3969/j.issn.1001-909X.2016.02.006
|
[11] |
Reggiannini M, Salvetti O. Seafloor analysis and understanding for underwater archeology[J]. Journal of Cultural Heritage, 2017, 24: 147−156. doi: 10.1016/j.culher.2016.10.012
|
[12] |
Abrahamsson R, Kay S M, Stoica P. Estimation of the parameters of a bilinear model with applications to submarine detection and system identification[J]. Digital Signal Processing, 2007, 17(4): 756−773. doi: 10.1016/j.dsp.2006.04.005
|
[13] |
Chandrasekhar A, Vivekananthan V, Khandelwal G, et al. A sustainable blue energy scavenging smart buoy toward self-powered smart fishing net tracker[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(10): 4120−4127.
|
[14] |
孙玉兰, 朱练军, 那健, 等. 潜标式水下目标噪声测量系统[J]. 测试技术学报, 2002, 16(S1): 505−508. doi: 10.3969/j.issn.1671-7449.2002.z1.104
Sun Yulan, Zhu Lianjun, Na Jian, et al. Buoyed under water noise monitor system[J]. Journal of Test and Measurement Technology, 2002, 16(S1): 505−508. doi: 10.3969/j.issn.1671-7449.2002.z1.104
|
[15] |
师俊杰, 吕云飞, 孙大军, 等. 潜标姿态变化对矢量水听器目标方位估计的影响[J]. 声学技术, 2014, 33(2): 125−130.
Shi Junjie, Lü Yunfei, Sun Dajun, et al. Influence of attitude changes of subsurface buoy on DOA estimation of vector hydrophone[J]. Technical Acoustics, 2014, 33(2): 125−130.
|
[16] |
张坤, 张慧娟, 方勇. 岸潜综合业务宽带通信关键技术与实现[J]. 计算机与网络, 2009, 35(9): 49−51. doi: 10.3969/j.issn.1008-1739.2009.09.038
Zhang Kun, Zhang Huijuan, Fang Yong. Implementation on shore-to-submarine wideband integrated service communication and its key techniques[J]. China Computer & Network, 2009, 35(9): 49−51. doi: 10.3969/j.issn.1008-1739.2009.09.038
|
[17] |
King P, Venkatesan R, Li Cheng. A study of channel capacity for a seabed underwater acoustic sensor network[C]//Proceedings of the OCEANS 2008. Quebec City: IEEE, 2008: 1−5.
|
[18] |
Hayes H C. Detection of submarines[J]. Proceedings of the American Philosophical Society, 1920, 59(1): 1−47.
|
[19] |
邓见奎, 王云兴, 王明月. 基频线谱提取技术在船舶水下目标识别系统的应用[J]. 舰船科学技术, 2017, 39(7A): 115−117.
Deng Jiankui, Wang Yunxing, Wang Mingyue. Application of fundamental frequency line spectrum extraction technology in underwater target recognition system[J]. Ship Science and Technology, 2017, 39(7A): 115−117.
|
[20] |
邓彬, 李韬, 汤斌, 等. 基于太赫兹雷达的声致海面微动信号检测[J]. 雷达学报, 2023, 12(4): 817−831. doi: 10.12000/JR23117
Deng Bin, Li Tao, Tang Bin, et al. Feature detection of acoustically induced sea surface micro-motions with terahertz radar[J]. Journal of Radars, 2023, 12(4): 817−831. doi: 10.12000/JR23117
|
[21] |
Zhang Zhiqiang, Shi Jian, Yu Zhang, et al. Feasibility analysis of submarine detection method based on the airborne gravity gradient[C]//Proceedings of the 37th Chinese Control Conference. Wuhan: IEEE, 2018: 4587−4591.
|
[22] |
王军成. 新一代海洋监测技术——综合智能观测浮标[J]. 智能系统学报, 2022, 17(3): 447. doi: 10.11992/tis.202204028
Wang Juncheng. A new generation of ocean monitoring technology——integrated intelligent observation buoy[J]. CAAI Transactions on Intelligent Systems, 2022, 17(3): 447. doi: 10.11992/tis.202204028
|
[23] |
Li Yunzhou, Wang Juncheng. Technical development of operational in-situ marine monitoring and research on its key generic technologies in China[J]. Acta Oceanologica Sinica, 2023, 42(10): 117−126. doi: 10.1007/s13131-023-2207-5
|
[24] |
周金元, 唐原广, 赵曙东. 基于海洋资料浮标上目标探测系统的集成设计[J]. 气象水文海洋仪器, 2013, 30(2): 73−76. doi: 10.3969/j.issn.1006-009X.2013.02.018
Zhou Jinyuan, Tang Yuanguang, Zhao Shudong. Integrated design of target detection system based on marine data buoy[J]. Meteorological, Hydrological and Marine Instruments, 2013, 30(2): 73−76. doi: 10.3969/j.issn.1006-009X.2013.02.018
|
[25] |
王超, 韩梅, 孙芹东, 等. 一种新型水下声学浮标在目标探测中的应用[J]. 热带海洋学报, 2021, 40(2): 130−138. doi: 10.11978/2020045
Wang Chao, Han Mei, Sun Qindong, et al. Application of a new type of underwater acoustic buoy in target detection[J]. Journal of Tropical Oceanography, 2021, 40(2): 130−138. doi: 10.11978/2020045
|
[26] |
Stewart J L, Westerfield E C. A theory of active sonar detection[J]. Proceedings of the IRE, 1959, 47(5): 872−881. doi: 10.1109/JRPROC.1959.287283
|
[27] |
Hahn W R. Optimum signal processing for passive sonar range and bearing estimation[J]. The Journal of the Acoustical Society of America, 1975, 58(1): 201−207. doi: 10.1121/1.380646
|
[28] |
李敏, 孙贵青, 李启虎. 分布式浮标阵水下高速运动声源三维被动定位[J]. 声学学报, 2009, 34(4): 289−295. doi: 10.3321/j.issn:0371-0025.2009.04.001
Li Min, Sun Guiqing, Li Qihu. Three dimensional passive localization based on distributed buoy array for underwater moving sound source with high speed[J]. Acta Acustica, 2009, 34(4): 289−295. doi: 10.3321/j.issn:0371-0025.2009.04.001
|
[29] |
赵聪蛟, 周燕. 国内海洋浮标监测系统研究概况[J]. 海洋开发与管理, 2013, 30(11): 13−18.
Zhao Congjiao, Zhou Yan. Overview of research on marine buoy monitoring system in China[J]. Ocean Development and Management, 2013, 30(11): 13−18.
|
[30] |
邓秀华, 刘飞, 梅新华. 一种基于锚系垂直阵列的水下移动目标警戒方法[J]. 数字海洋与水下攻防, 2020, 3(1): 76−81.
Deng Xiuhua, Liu Fei, Mei Xinhua. An alert method for underwater mobile target based on moored vertical array[J]. Digital Ocean & Underwater Warfare, 2020, 3(1): 76−81.
|
[31] |
刘帅京, 许枫, 杨娟. 稳健声线扰动特征用于浅海小目标定位[J]. 应用声学, 2021, 40(6): 810−820. doi: 10.11684/j.issn.1000-310X.2021.06.002
Liu Shuaijing, Xu Feng, Yang Juan. Small target localization in shallow sea based on the perturbation feature of stable eigenrays[J]. Journal of Applied Acoustics, 2021, 40(6): 810−820. doi: 10.11684/j.issn.1000-310X.2021.06.002
|
[32] |
王佳婧, 赵向涛, 寇祝. 深远海预置水下预警探测锚系平台及作战应用[C]//第五届水下无人系统技术高峰论坛——以深制海, 智领发展论文集. 西安: 中国造船工程学会, 2022: 64−68.
Wang Jiajing, Zhao Xiangtao, Kou Zhu. Deep sea pre-installed underwater warning and detection anchor platform and its combat application[C]//Proceedings of the 5th Underwater Unmanned System Technology Summit Forum of the Chinese Society of Naval Architects and Marine Engineers. Xi’an: The Chinese Society of Naval Architects and Marine Engineers, 2022: 64−68.
|
[33] |
郭小玮, 郑广赢, 严琪. 用于浅海有源声呐目标深度估计的匹配相位处理[J]. 声学学报, 2022, 47(6): 800−809.
Guo Xiaowei, Zheng Guangying, Yan Qi. Matched phase processing for active target depth estimation in shallow water[J]. Acta Acustica, 2022, 47(6): 800−809.
|
[34] |
Kikuchi T, Inoue J, Langevin D. Argo-type profiling float observations under the Arctic multiyear ice[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2007, 54(9): 1675−1686. doi: 10.1016/j.dsr.2007.05.011
|
[35] |
Ma Lin, Gulliver T A, Zhao Anbang, et al. An underwater bistatic positioning system based on an acoustic vector sensor and experimental investigation[J]. Applied Acoustics, 2021, 171: 107558. doi: 10.1016/j.apacoust.2020.107558
|
[36] |
孙芹东, 王超, 张小川, 等. 二维矢量水听器及其在Argo浮标平台上的应用技术[J]. 兵工学报, 2020, 41(8): 1566−1572. doi: 10.3969/j.issn.1000-1093.2020.08.011
Sun Qindong, Wang Chao, Zhang Xiaochuan, et al. Two-dimensional vector hydrophone and its application in Argo buoy platform[J]. Acta Armamentarii, 2020, 41(8): 1566−1572. doi: 10.3969/j.issn.1000-1093.2020.08.011
|
[37] |
Kavoosi V, Dehghani M J, Javidan R. Underwater acoustic source positioning by isotropic and vector hydrophone combination[J]. Journal of Sound and Vibration, 2021, 501: 116031. doi: 10.1016/j.jsv.2021.116031
|
[38] |
何心怡, 邱志明, 张春华, 等. 一种基于三枚主动全向浮标的水下目标定位方法[J]. 武汉理工大学学报(交通科学与工程版), 2007, 31(6): 1021−1024.
He Xinyi, Qiu Zhiming, Zhang Chunhua, et al. Positioning method of underwater target based on three active omnidirectional buoys[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2007, 31(6): 1021−1024.
|
[39] |
王新为, 尹成义. 反潜巡逻机使用被动全向声呐浮标对潜跟踪方法[J]. 指挥控制与仿真, 2017, 39(3): 60−63. doi: 10.3969/j.issn.1673-3819.2017.03.013
Wang Xinwei, Yin Chengyi. Submarine tracking method of anti-submarine patrol aircraft using passive omni-directional sonobuoy[J]. Command Control & Simulation, 2017, 39(3): 60−63. doi: 10.3969/j.issn.1673-3819.2017.03.013
|
[40] |
Almeida R, Cruz N, Matos A. Synchronized intelligent buoy network for underwater positioning[C]//Proceedings of the OCEANS 2010 MTS/IEEE SEATTLE. Seattle: IEEE, 2010: 1−6.
|
[41] |
吴月东. 声纳浮标搜潜网络节点配置数目的确定和优化[J]. 舰船电子工程, 2007, 27(5): 150−152. doi: 10.3969/j.issn.1627-9730.2007.05.047
Wu Yuedong. Determination and optimization of node placement number for sonobuoy WSN of searching submarine[J]. Ship Electronic Engineering, 2007, 27(5): 150−152. doi: 10.3969/j.issn.1627-9730.2007.05.047
|
[42] |
Kurano S, Ishiwata T, Konishi N. The study of the float buoy ranging system for the underwater vehicle[C]//Proceedings of the 2000 International Symposium on Underwater Technology. Tokyo: IEEE, 2000: 161−166.
|
[43] |
Ma Yan, Mao Zhaoyong, Qin J, et al. A quick deployment method for sonar buoy detection under the overview situation of underwater cluster targets[J]. IEEE Access, 2020, 8: 11−25. doi: 10.1109/ACCESS.2019.2961555
|
[44] |
战和, 杨日杰, 金中原. 被动定向浮标探潜模型研究[J]. 声学技术, 2016, 35(2): 125−128.
Zhan He, Yang Rijie, Jin Zhongyuan. Research on detection model of passive directional buoys[J]. Technical Acoustics, 2016, 35(2): 125−128.
|
[45] |
曾海燕, 杨日杰, 周旭. 声纳浮标搜潜优化布放技术研究[J]. 指挥控制与仿真, 2012, 34(1): 82−85. doi: 10.3969/j.issn.1673-3819.2012.01.020
Zeng Haiyan, Yang Rijie, Zhou Xu. Research on sonobuoys deployment technology in searching submarine[J]. Command Control & Simulation, 2012, 34(1): 82−85. doi: 10.3969/j.issn.1673-3819.2012.01.020
|
[46] |
王磊, 吴福初, 陈钰宁, 等. 基于声纳浮标的反潜直升机应召搜潜仿真研究[J]. 指挥控制与仿真, 2010, 32(2): 84−88. doi: 10.3969/j.issn.1673-3819.2010.02.022
Wang Lei, Wu Fuchu, Chen Yuning, et al. Simulative research of on-call antisubmarine of ASW helicopter using sonar buoy[J]. Command Control & Simulation, 2010, 32(2): 84−88. doi: 10.3969/j.issn.1673-3819.2010.02.022
|
[47] |
梁巍, 杨日杰, 熊雄. 被动定向声纳浮标跟踪潜艇优化布放[J]. 兵工自动化, 2017, 36(10): 42−45,79.
Liang Wei, Yang Rijie, Xiong Xiong. Optimal deployment of passive directional sonobuoy in underwater target tracking[J]. Ordnance Industry Automation, 2017, 36(10): 42−45,79.
|
[48] |
杨日杰, 周旭, 张林琳. 主动全向声纳浮标跟踪潜艇优化布放方法[J]. 系统工程与电子技术, 2011, 33(10): 2249−2253. doi: 10.3969/j.issn.1001-506X.2011.10.21
Yang Rijie, Zhou Xu, Zhang Linlin. Optimal deployment of active omni-directional sonobuoys in underwater target tracking[J]. Systems Engineering and Electronics, 2011, 33(10): 2249−2253. doi: 10.3969/j.issn.1001-506X.2011.10.21
|
[49] |
唐晨, 孙秀文, 王旅. 反潜巡逻机对潜应召搜索声呐浮标布放阵位优化问题研究[J]. 舰船电子工程, 2022, 42(2): 62−65. doi: 10.3969/j.issn.1672-9730.2022.02.013
Tang Chen, Sun Xiuwen, Wang Lv. Research on optimization position of sonobuoy in anti-submarine call-search by anti-submarine patrol aircraft[J]. Ship Electronic Engineering, 2022, 42(2): 62−65. doi: 10.3969/j.issn.1672-9730.2022.02.013
|
[50] |
南银波, 曾广荣. 基于HLA的反潜巡逻机浮标搜潜模型仿真框架结构设计[J]. 国外电子测量技术, 2017, 36(5): 78−80,85. doi: 10.3969/j.issn.1002-8978.2017.05.018
Nan Yinbo, Zeng Guangrong. Anti-submarine patrol aircraft buoy searching submarine model simulation frame design based on HLA[J]. Foreign Electronic Measurement Technology, 2017, 36(5): 78−80,85. doi: 10.3969/j.issn.1002-8978.2017.05.018
|
[51] |
王牧原, 马良荔, 陈鹏先, 等. 基于Dubins路径的浮标搜潜阵型优化[J]. 兵器装备工程学报, 2023, 44(S1): 216−220, 255.
Wang Muyuan, Ma Liangli, Chen Pengxian, et al. Optimization of buoy submarine search arraybased on Dubins path[J]. Journal of Ordnance Equipment Engineering, 2023, 44(S1): 216−220, 255.
|
[52] |
Benmohamed L, Chimento P, Doshi B, et al. Sensor network design for underwater surveillance[C]//Proceedings of the MILCOM 2006-2006 IEEE Military Communications Conference. Washington: IEEE, 2006: 1−7.
|
[53] |
Saksena A, Benmohamed L, Dunne J, et al. Improving system-wide detection performance for sonar buoy networks using in-network fusion[C]//Proceedings of the MILCOM 2007-IEEE Military Communications Conference. Orlando: IEEE, 2007: 1−7.
|
[54] |
Wang Xuemin, Lu Renwei, Li Wenhai. Underwater target passive detection method based on Hough transform track-before-detect[J]. Journal of Physics: Conference Series, 2022, 2258(1): 012073. doi: 10.1088/1742-6596/2258/1/012073
|
[55] |
鞠建波, 张雨杭, 敬玉平. 基于北斗系统的被动浮标对潜定位精度分析[J]. 指挥控制与仿真, 2018, 40(4): 29−32. doi: 10.3969/j.issn.1673-3819.2018.04.007
Ju Jianbo, Zhang Yuhang, Jing Yuping. Analysis of positioning accuracy of submarine by passive sonobuoy based on Beidou system[J]. Command Control & Simulation, 2018, 40(4): 29−32. doi: 10.3969/j.issn.1673-3819.2018.04.007
|
[56] |
Liu Mengzhuo, Zhu Jifeng, Pan Xiaohe, et al. A distributed intelligent buoy system for tracking underwater vehicles[J]. Journal of Marine Science and Engineering, 2023, 11(9): 1661. doi: 10.3390/jmse11091661
|
[57] |
许爱强, 盛沛, 谭勖. 机载浮标搜潜系统搜潜效能评估模型[J]. 兵工自动化, 2011, 30(8): 43−45. doi: 10.3969/j.issn.1006-1576.2011.08.013
Xu Aiqiang, Sheng Pei, Tan Xu. A model for evaluating submarine reconnaissance effectiveness of air-borne buoy submarine reconnaissance system[J]. Ordnance Industry Automation, 2011, 30(8): 43−45. doi: 10.3969/j.issn.1006-1576.2011.08.013
|
[58] |
秦锋, 孙明太, 周利辉. 航空被动声纳浮标搜潜作战效能仿真模型[C]//第14届中国系统仿真技术及其应用学术年会. 三亚: 中国自动化学会系统仿真专业委员会, 2012: 535−539.
Qin Feng, Sun Mingtai, Zhou Lihui. Simulation model for air passive sonobuoys combat effectiveness of searching submarine[C]//Proceedings of 14th Chinese Conference on System Simulation Technology & Application. Sanya: System Simulation Professional Committee of the Chinese Society of Automation, 2012: 535−539.
|
[59] |
成建波. 基于声呐浮标的大型无人机搜潜效能分析[J]. 声学与电子工程, 2023(1): 37−40.
Cheng Jianbo. Analysis of submarine search effectiveness of large-scale unmanned aerial vehicles based on sonar buoys[J]. Acoustics and Electronics Engineering, 2023(1): 37−40.
|
[60] |
Li Yuhan, Ruan Ruizhi, Zhou Zupeng, et al. Positioning of unmanned underwater vehicle based on autonomous tracking buoy[J]. Sensors, 2023, 23(9): 4398. doi: 10.3390/s23094398
|
[61] |
Caiti A, Garulli A, Livide F, et al. Localization of autonomous underwater vehicles by floating acoustic buoys: a set-membership approach[J]. IEEE Journal of Oceanic Engineering, 2005, 30(1): 140−152. doi: 10.1109/JOE.2004.841432
|
[62] |
刘百峰, 罗坤, 赵珩. 基于中继浮标实现水下运动目标大范围监测方法研究[J]. 舰船电子工程, 2013, 33(2): 144−146. doi: 10.3969/j.issn.1627-9730.2013.02.050
Liu Baifeng, Luo Kun, Zhao Heng. Mobile great range measure-lineup of underwater object based on buoy relay[J]. Ship Electronic Engineering, 2013, 33(2): 144−146. doi: 10.3969/j.issn.1627-9730.2013.02.050
|
[63] |
Rice J, Wilson G, Barlett M, et al. Maritime surveillance in the intracoastal waterway using networked underwater acoustic sensors integrated with a regional command center[C]//Proceedings of 2010 International WaterSide Security Conference. Carrara: IEEE, 2010: 1−6.
|
[64] |
Zolich A, Alfredsen J A, Johansen T A, et al. A communication bridge between underwater sensors and unmanned vehicles using a surface wireless sensor network-design and validation[C]//Proceedings of the OCEANS 2016-Shanghai. Shanghai: IEEE, 2016: 1−9.
|
[65] |
曾财高. 浅海远程水声通信关键技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2022.
Zeng Caigao. Research on long-range underwater acoustic communication in shallow water[D]. Harbin: Harbin Engineering University, 2022.
|
[66] |
Ju Jianbo, Yu Hongbo. Based on different buoy array under the submarine evasive time[C]//Proceedings of 2019 IEEE International Conference on Signal, Information and Data Processing. Chongqing: IEEE, 2019: 1−5.
|
[67] |
高学强, 杨日杰, 杨春英. 潜艇规避对主动声纳浮标作战效能影响研究[J]. 系统工程与电子技术, 2008, 30(2): 300−303. doi: 10.3321/j.issn:1001-506X.2008.02.026
Gao Xueqiang, Yang Rijie, Yang Chunying. Research on the effects of submarine evasion on combat effectiveness of active sonobuoy[J]. Systems Engineering and Electronics, 2008, 30(2): 300−303. doi: 10.3321/j.issn:1001-506X.2008.02.026
|
[68] |
Bae H S, Kim W K, Son S U, et al. Imaging of artificial bubble distribution using a multi-sonar array system[J]. Journal of Marine Science and Engineering, 2022, 10(12): 1822. doi: 10.3390/jmse10121822
|
[69] |
盛基伟, 胡成军. 浮标干扰声纳浮标与反潜飞机通信的可行性分析[J]. 数字技术与应用, 2010(7): 139−140.
Sheng Jiwei, Hu Chengjun. Feasibility analysis of buoy interference sonar buoy and anti submarine aircraft communication[J]. Digital Technology & Application, 2010(7): 139−140.
|
[70] |
Fefilatyev S, Goldgof D B, Lembke C. Autonomous buoy platform for low-cost visual maritime surveillance: design and initial deployment[C]//Proceedings of SPIE 7317, Ocean Sensing and Monitoring. Orlando: SPIE, 2009: 48−59.
|
[71] |
Raimondi F M, Trapanese M, Martorana P, et al. A security and surveillance application of the innovative monitoring underwater buoy systems (MUnBuS) on the protected marine area (AMP) of capo Gallo (PA-IT)[C]//Proceedings of the OCEANS 2015-MTS/IEEE Washington. Washington: IEEE, 2015: 1−4.
|
[72] |
Yang Liming, Liang Jian, Zhang Wenfei, et al. Underwater polarimetric imaging for visibility enhancement utilizing active unpolarized illumination[J]. Optics Communications, 2019, 438: 96−101. doi: 10.1016/j.optcom.2018.12.022
|
[73] |
Wang Jiajie, Wan Minjie, Cao Xiqing, et al. Active non-uniform illumination-based underwater polarization imaging method for objects with complex polarization properties[J]. Optics Express, 2022, 30(26): 46926−46943. doi: 10.1364/OE.474026
|
[74] |
Han Pingli, Liu Fei, Yang Kui, et al. Active underwater descattering and image recovery[J]. Applied Optics, 2017, 56(23): 6631−6638. doi: 10.1364/AO.56.006631
|
[75] |
Austin R W, Duntley S Q, Ensminger R L, et al. Underwater laser scanning system[C]//Proceedings of SPIE 1537, Underwater Imaging, Photography, and Visibility. San Diego: SPIE, 1991: 57−73.
|
[76] |
Bleier M, van der Lucht J, Nüchter A. SCOUT 3D–An underwater laser scanning system for mobile mapping[C]//Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Strasbourg: ISPRS, 2019: 13−18.
|
[77] |
Yang Yu, Zheng Bing, Zheng Haiyong, et al. 3D reconstruction for underwater laser line scanning[C]//Proceedings of the 2013 MTS/IEEE OCEANS-Bergen. Bergen: IEEE, 2013: 1−3.
|
[78] |
Kulp T J, Garvis D, Kennedy R, et al. Current status of the NAVSEA synchronous scanning laser imaging system[C]//Proceedings of SPIE 0980, Underwater Imaging. San Diego: SPIE, 1988: 57−65.
|
[79] |
Wang Hongyuan, Hu Haofeng, Jiang Junfeng, et al. Automatic underwater polarization imaging without background region or any prior[J]. Optics Express, 2021, 29(20): 31283−31295. doi: 10.1364/OE.434398
|
[80] |
Deng Jinxin, Zhu Jingping, Li Haoxiang, et al. Real-time underwater polarization imaging without relying on background[J]. Optics and Lasers in Engineering, 2023, 169: 107721. doi: 10.1016/j.optlaseng.2023.107721
|
[81] |
Wu Houde, Zhao Ming, Li Fengqiang, et al. Underwater polarization-based single pixel imaging[J]. Journal of the Society for Information Display, 2020, 28(2): 157−163. doi: 10.1002/jsid.838
|
[82] |
许珈诺, 赵健, 李校博, 等. 基于频谱信息的浑浊水下偏振成像技术[J]. 光学学报, 2023, 43(18): 1811001. doi: 10.3788/AOS230463
Xu Jianuo, Zhao Jian, Li Xiaobo, et al. Polarization imaging in turbid water based on spectral information[J]. Acta Optica Sinica, 2023, 43(18): 1811001. doi: 10.3788/AOS230463
|
[83] |
Mariani P, Quincoces I, Haugholt K H, et al. Range-gated imaging system for underwater monitoring in ocean environment[J]. Sustainability, 2018, 11(1): 162. doi: 10.3390/su11010162
|
[84] |
Tan C S, Sluzek A, Seet G L G, et al. Range gated imaging system for underwater robotic vehicle[C]//Proceedings of the OCEANS 2006-Asia Pacific. Singapore: IEEE, 2006: 1−6.
|
[85] |
Fournier G R, Bonnier D, Forand J L, et al. Range-gated underwater laser imaging system[J]. Optical Engineering, 1993, 32(9): 2185−2190. doi: 10.1117/12.143954
|
[86] |
孙健, 张晓晖, 葛卫龙, 等. 距离选通激光水下成像系统的门控信号对图像质量的影响[J]. 光学学报, 2009, 29(8): 2185−2190. doi: 10.3788/AOS20092908.2185
Sun Jian, Zhang Xiaohui, Ge Weilong, et al. Relation between imaging quality and gate-control signal of underwater range-gated imaging system[J]. Acta Optica Sinica, 2009, 29(8): 2185−2190. doi: 10.3788/AOS20092908.2185
|
[87] |
Ouyang Bing, Dalgleish F R, Caimi F M, et al. Compressive line sensing underwater imaging system[J]. Optical Engineering, 2014, 53(5): 051409. doi: 10.1117/1.OE.53.5.051409
|
[88] |
Monika R, Dhanalakshmi S, Kumar R, et al. Coefficient permuted adaptive block compressed sensing for camera enabled underwater wireless sensor nodes[J]. IEEE Sensors Journal, 2022, 22(1): 776−784. doi: 10.1109/JSEN.2021.3130947
|
[89] |
Maccarone A, Drummond K, McCarthy A, et al. Submerged single-photon LiDAR imaging sensor used for real-time 3D scene reconstruction in scattering underwater environments[J]. Optics Express, 2023, 31(10): 16690−16708. doi: 10.1364/OE.487129
|
[90] |
Hollmann M, Engelmann J, Von Der Emde G. Distribution, density and morphology of electroreceptor organs in mormyrid weakly electric fish: anatomical investigations of a receptor mosaic[J]. Journal of Zoology, 2008, 276(2): 149−158. doi: 10.1111/j.1469-7998.2008.00465.x
|
[91] |
Rasnow B. The Effects of simple objects on the electric field of apteronotus[J]. Journal of Comparative Physiology A, 1996, 178(3): 397−411.
|
[92] |
Bai Yang, Snyder J B, Peshkin M, et al. Finding and identifying simple objects underwater with active electrosense[J]. The International Journal of Robotics Research, 2015, 34(10): 1255−1277. doi: 10.1177/0278364915569813
|
[93] |
雍涛. 水下主动电场定位系统二维空间定位特性及算法研究[D]. 成都: 电子科技大学, 2015.
Yong Tao. Research on the electrical location characteristic in two-dimensional space and the positioning algorithm of underwater active electrolocation system[D]. Chengdu: University of Electronic Science and Technology of China, 2015.
|
[94] |
赵玉川. 基于旋转电流场的水下定位系统设计与实现[D]. 哈尔滨: 哈尔滨工程大学, 2016.
Zhao Yuchuan. Design and realization of the underwater positioning system based on rotated current field[D] Harbin: Harbin Engineering University, 2016.
|
[95] |
刘亮. 基于传导电流场理论的水下定位系统研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
Liu Liang. Research of the underwater positioning system based on the conduction current field theory[D]. Harbin: Harbin Engineering University, 2015.
|
[96] |
杨超. 水下主动电场定位关键特性研究[D]. 成都: 电子科技大学, 2014.
Yang Chao. Research on the critical features in underwater active electrolocation[D]. Chengdu: University of Electronic Science and Technology of China, 2014.
|
[97] |
祝悦. 基于主动电场定位的水下终端对接目标定位研究[D]. 成都: 电子科技大学, 2017.
Zhu Yue. Research on target location in underwater terminal docking based on active electrolocation[D]. Chengdu: University of Electronic Science and Technology of China, 2017.
|
[98] |
Primdahl F. The fluxgate magnetometer[J]. Journal of Physics E: Scientific Instruments, 1979, 12(4): 241−253. doi: 10.1088/0022-3735/12/4/001
|
[99] |
Pendlebury J M, Smith K, Unsworth P, et al. Precision field averaging NMR magnetometer for low and high fields, using flowing water[J]. Review of Scientific Instruments, 1979, 50(5): 535−540. doi: 10.1063/1.1135904
|
[100] |
Beljers H G, van der Kint L, van Wieringen J S. Overhauser effect in a free radical[J]. Physical Review, 1954, 95(6): 1683.
|
[101] |
Dehmelt H G. Slow spin relaxation of optically polarized sodium atoms[J]. Physical Review, 1957, 105(5): 1487−1489. doi: 10.1103/PhysRev.105.1487
|
[102] |
Cowls S, Jordan S. The enhancement and verification of a pulse induction based buried pipe and cable survey system[C]//Proceedings of the OCEANS’02 MTS/IEEE. Biloxi: IEEE, 2002: 508−511.
|
[103] |
Qi Youzheng, Huang Ling, Wang Xucun, et al. Airborne transient electromagnetic modeling and inversion under full attitude change[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1575−1579. doi: 10.1109/LGRS.2017.2724558
|
[104] |
李丁山, 屈文璋, 许诚, 等. 基于航空瞬变电磁法的水下高导体探测方法[J]. 水下无人系统学报, 2023, 31(4): 607−613. doi: 10.11993/j.issn.2096-3920.2023-0063
Li Dingshan, Qu Wenzhang, Xu Cheng, et al. Underwater detection method of highly conductively targets based on airborne transient electromagnetic method[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 607−613. doi: 10.11993/j.issn.2096-3920.2023-0063
|
[105] |
Szyrowski T, Sharma S K, Sutton R, et al. Developments in subsea power and telecommunication cables detection: Part 1-Visual and hydroacoustic tracking[J]. Underwater Technology, 2013, 31(3): 123−132. doi: 10.3723/ut.31.123
|
[106] |
Szyrowski T, Sharma S K, Sutton R, et al. Developments in subsea power and telecommunication cables detection: Part 2-Electromagnetic detection[J]. Underwater Technology, 2013, 31(3): 133−143. doi: 10.3723/ut.31.133
|
[107] |
Zhang Jialei, Xiang Xianbo, Li Weijia, et al. Fermat’s spiral smooth planar path planning under origin-departing and corner-cutting transitions for autonomous marine vehicles[J]. Ocean Engineering, 2020, 215: 107901. doi: 10.1016/j.oceaneng.2020.107901
|
[108] |
朱武兵. 探测安静型潜艇的磁探浮标[J]. 声学与电子工程, 2001(2): 12−18.
Zhu Wubing. Magnetic buoy for detecting quiet submarines[J]. Acoustics and Electronics Engineering, 2001(2): 12−18.
|
[109] |
王猛, 邓明, 伍忠良, 等. 新型坐底式海洋可控源电磁发射系统及其海试应用[J]. 地球物理学报, 2017, 60(11): 4253−4261. doi: 10.6038/cjg20171113
Wang Meng, Deng Ming, Wu Zhongliang, et al. New type deployed marine controlled source electromagnetic transmitter system and its experiment application[J]. Chinese Journal of Geophysics, 2017, 60(11): 4253−4261. doi: 10.6038/cjg20171113
|
[110] |
Li Hongyu, Fan Yanjun, Wen Yicheng, et al. Communication management and data compression algorithm design of BeiDou transparent transmission terminal for Argo buoy[J]. Journal of Marine Science and Engineering, 2024, 12(1): 173. doi: 10.3390/jmse12010173
|
[111] |
Li Yang, Zhang Zhongshan, Wei Huangfu, et al. Sea route monitoring system using wireless sensor network based on the data compression algorithm[J]. China Communications, 2014, 11(13): 179−186. doi: 10.1109/CC.2014.7022543
|
[112] |
Ku K K K, Bradbeer R, Hodgson P, et al. A low-cost, three-dimensional and real-time marine environment monitoring system, Databuoy with connection to the internet[C]//Proceedings of the OCEANS 2008-MTS/IEEE Kobe Techno-Ocean. Kobe: IEEE, 2008: 1−5.
|
[113] |
Park J, Seok J, Hong J. Autoencoder-based signal modulation and demodulation methods for sonobuoy signal transmission and reception[J]. Sensors, 2022, 22(17): 6510. doi: 10.3390/s22176510
|
[114] |
Cui Xiangbiao, Xu Jiayi, Pang Shui, et al. Design and implementation of inductively coupled power and data transmission for buoy systems[J]. Energies, 2023, 16(11): 4417. doi: 10.3390/en16114417
|
[115] |
Shi Xianpeng, Lembke C. Characteristic function–based trial-and-error control of underwater profilers for vertical-column observation[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2016, 230(3): 523−530. doi: 10.1177/1475090215604859
|
[116] |
Anghinolfi M, Calzas A, Dinkespiler B, et al. The underwater power and communications hub of the ANTARES neutrino telescope[C]//Proceedings of the IEEE Nuclear Science Symposium Conference Record, 2005. Fajardo: IEEE, 2005: 438−442.
|
[117] |
Ardid M, Martínez-Mora J A, Bou-Cabo M, et al. Acoustic transmitters for underwater neutrino telescopes[J]. Sensors, 2012, 12(4): 4113−4132. doi: 10.3390/s120404113
|
[118] |
Li Dongdong, Shen Qi, Chen Wei, et al. Proof-of-principle demonstration of quantum key distribution with seawater channel: towards space-to-underwater quantum communication[J]. Optics Communications, 2019, 452: 220−226. doi: 10.1016/j.optcom.2019.07.037
|
[119] |
Ma Hongyang, Teng Jikai, Hu Tong, et al. Co-communication protocol of underwater sensor networks with quantum and acoustic communication capabilities[J]. Wireless Personal Communications, 2020, 113(1): 337−347. doi: 10.1007/s11277-020-07192-7
|
[120] |
Baker Jr R M L, Baker B S. Interdisciplinary communication: from gravitational waves to multiuniverses[J]. Systemics, Cybernetics and Informatics, 2020, 18(1): 217−243.
|
[121] |
Ghafoor H, Noh Y. An overview of next-generation underwater target detection and tracking: an integrated underwater architecture[J]. IEEE Access, 2019, 7: 98841−98853. doi: 10.1109/ACCESS.2019.2929932
|
[122] |
Inzartsev A V, Pavin A M. AUV cable tracking system based on electromagnetic and video data[C]//Proceedings of the OCEANS 2008-MTS/IEEE Kobe Techno-Ocean. Kobe: IEEE, 2008: 1−6.
|