Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 4
Jun.  2024
Turn off MathJax
Article Contents
Xu Xiaoyang,Zhang Daqian,Zhang Lujun. Characteristics analysis of summer-autumn extreme wave events in the Arctic Ocean[J]. Haiyang Xuebao,2024, 46(4):13–22 doi: 10.12284/hyxb2024037
Citation: Xu Xiaoyang,Zhang Daqian,Zhang Lujun. Characteristics analysis of summer-autumn extreme wave events in the Arctic Ocean[J]. Haiyang Xuebao,2024, 46(4):13–22 doi: 10.12284/hyxb2024037

Characteristics analysis of summer-autumn extreme wave events in the Arctic Ocean

doi: 10.12284/hyxb2024037
  • Received Date: 2024-01-09
  • Rev Recd Date: 2024-03-21
  • Available Online: 2024-05-21
  • Publish Date: 2024-06-30
  • This study used ERA5 reanalysis data to collect an extreme wave event dataset for various regions in the Arctic Ocean during August to October from 1979 to 2021. The analysis focused on the frequency of extreme wave events, changes in extreme wave heights, features of wave power and wave direction distribution, as well as the change of sea ice during wave events. The results suggest that as sea ice decreases, the range of extreme wave activity in the Arctic expands. All regions, except the Barents Sea, exhibit an increase in the occurrence of extreme wave events. In particular, extreme wave heights in the East Siberian Sea and Laptev Sea have significantly increased at rates of approximately 3.5 cm/a and 2 cm/a, respectively, with event frequency reaching around 4 events per year. The dominant wave direction in the Laptev Sea is southerly, facilitating more frequent wave propagation into the ice zone compared to other seas, with an average wave energy flux ranging from 5−8 kW/m. The changes in sea ice within extreme wave events primarily occur in the marginal ice zones and are associated with wind direction: sea ice is more likely to decrease with on-ice winds, while it is more likely to increase with off-ice winds.
  • loading
  • [1]
    Zhang Jinlun, Lindsay R, Schweiger A, et al. The impact of an intense summer cyclone on 2012 Arctic sea ice retreat[J]. Geophysical Research Letters, 2013, 40(4): 720−726. doi: 10.1002/grl.50190
    [2]
    Frey K E, Moore G W K, Cooper L W, et al. Divergent patterns of recent sea ice cover across the Bering, Chukchi, and Beaufort seas of the Pacific Arctic Region[J]. Progress in Oceanography, 2015, 136: 32−49. doi: 10.1016/j.pocean.2015.05.009
    [3]
    Francis O P, Panteleev G G, Atkinson D E. Ocean wave conditions in the Chukchi Sea from satellite and in situ observations[J]. Geophysical Research Letters, 2011, 38(24): L24610.
    [4]
    Liu Qingxiang, Babanin A V, Zieger S, et al. Wind and wave climate in the Arctic Ocean as observed by altimeters[J]. Journal of Climate, 2016, 29(22): 7957−7975. doi: 10.1175/JCLI-D-16-0219.1
    [5]
    Wang X L, Feng Yang, Swail V R, et al. Historical changes in the Beaufort–Chukchi–Bering Seas surface winds and waves, 1971–2013[J]. Journal of Climate, 2015, 28(19): 7457−7469. doi: 10.1175/JCLI-D-15-0190.1
    [6]
    Waseda T, Webb A, Sato K, et al. Correlated increase of high ocean waves and winds in the ice-free waters of the Arctic Ocean[J]. Scientific Reports, 2018, 8(1): 4489. doi: 10.1038/s41598-018-22500-9
    [7]
    Waseda T, Nose T, Kodaira T, et al. Climatic trends of extreme wave events caused by Arctic Cyclones in the western Arctic Ocean[J]. Polar Science, 2021, 27: 100625. doi: 10.1016/j.polar.2020.100625
    [8]
    Stopa J E, Ardhuin F, Girard-Ardhuin F. Wave climate in the Arctic 1992–2014: seasonality and trends[J]. The Cryosphere, 2016, 10(4): 1605−1629. doi: 10.5194/tc-10-1605-2016
    [9]
    Asplin M G, Galley R, Barber D G, et al. Fracture of summer perennial sea ice by ocean swell as a result of Arctic storms[J]. Journal of Geophysical Research: Oceans, 2012, 117(C6): C06025.
    [10]
    Casas-Prat M, Wang X L. Sea ice retreat contributes to projected increases in extreme Arctic Ocean surface waves[J]. Geophysical Research Letters, 2020, 47(15): e2020GL088100. doi: 10.1029/2020GL088100
    [11]
    Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999−2049. doi: 10.1002/qj.3803
    [12]
    Patra A, Min S K, Son S W, et al. Hemispheric asymmetry in future wave power changes: seasonality and physical mechanisms[J]. Journal of Geophysical Research: Oceans, 2021, 126(12): e2021JC017687. doi: 10.1029/2021JC017687
    [13]
    Parkinson C L, Cavalieri D J, Gloersen P, et al. Arctic sea ice extents, areas, and trends, 1978–1996[J]. Journal of Geophysical Research: Oceans, 1999, 104(C9): 20837−20856. doi: 10.1029/1999JC900082
    [14]
    Meier W N, Stroeve J, Fetterer F. Whither Arctic sea ice? A clear signal of decline regionally, seasonally and extending beyond the satellite record[J]. Annals of Glaciology, 2007, 46: 428−434. doi: 10.3189/172756407782871170
    [15]
    Bell R J, Gray S L, Jones O P. North Atlantic storm driving of extreme wave heights in the North Sea[J]. Journal of Geophysical Research: Oceans, 2017, 122(4): 3253−3268. doi: 10.1002/2016JC012501
    [16]
    Menéndez M, Méndez F J, Losada I J, et al. Variability of extreme wave heights in the northeast Pacific Ocean based on buoy measurements[J]. Geophysical Research Letters, 2008, 35(22): L22607.
    [17]
    Myslenkov S, Platonov V, Kislov A, et al. Thirty-nine-year wave hindcast, storm activity, and probability analysis of storm waves in the Kara Sea, Russia[J]. Water, 2021, 13(5): 648. doi: 10.3390/w13050648
    [18]
    Wang Xue, Lu Ran, Wang Shaoyin, et al. Assessing CMIP6 simulations of Arctic sea ice drift: Role of near-surface wind and surface ocean current in model performance[J]. Advances in Climate Change Research, 2023, 14(5): 691−706. doi: 10.1016/j.accre.2023.09.005
    [19]
    郝光华, 沈辉, 田忠翔, 等. 北冰洋高纬度区域海冰及气象特征分析[J]. 海洋学报, 2021, 43(7): 90−99.

    Hao Guanghua, Shen Hui, Tian Zhongxiang, et al. The characteristics of sea ice and atmospheric factors over the high latitude Arctic region[J]. Haiyang Xuebao, 2021, 43(7): 90−99.
    [20]
    牟龙江, 赵进平. 格陵兰海海冰外缘线变化特征分析[J]. 地球科学进展, 2013, 28(6): 709−717. doi: 10.11867/j.issn.1001-8166.2013.06.0709

    Mu Longjiang, Zhao Jinping. Variability of the Greenland Sea ice edge[J]. Advances in Earth Science, 2013, 28(6): 709−717. doi: 10.11867/j.issn.1001-8166.2013.06.0709
    [21]
    Collins III C O, Rogers W E, Marchenko A, et al. In situ measurements of an energetic wave event in the Arctic marginal ice zone[J]. Geophysical Research Letters, 2015, 42(6): 1863−1870. doi: 10.1002/2015GL063063
    [22]
    Mioduszewski J, Vavrus S, Wang Muyin. Diminishing Arctic sea ice promotes stronger surface winds[J]. Journal of Climate, 2018, 31(19): 8101−8119. doi: 10.1175/JCLI-D-18-0109.1
    [23]
    Thomson J, Rogers W E. Swell and sea in the emerging Arctic Ocean[J]. Geophysical Research Letters, 2014, 41(9): 3136−3140. doi: 10.1002/2014GL059983
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (223) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return