Citation: | Deng Bin,Wang Ling,He Jun, et al. Prediction of transmission coefficient of double-row perforated cylinder breakwater based on SSA-CNN model[J]. Haiyang Xuebao,2024, 46(4):122–132 doi: 10.12284/hyxb2024035 |
[1] |
季则舟, 吴波, 李超, 等. 双排圆筒透空式防波堤: 201920286464.1[P]. 2019−03−07.
Ji Zezhou, Wu Bo, Li Chao, et al. Double-row cylinder permeable breakwater: 201920286464.1[P]. 2019−03−07.
|
[2] |
Stoker J J. Water Waves: The Mathematical Theory with Applications[M]. New York: Interscience Publishers, 1957, 83.
|
[3] |
Suvarna P S, Sathyanarayana A H, Umesh P, et al. Laboratory investigation on hydraulic performance of enlarged pile head breakwater[J]. Ocean Engineering, 2020, 217: 107989. doi: 10.1016/j.oceaneng.2020.107989
|
[4] |
Liu H.W., Ghidaoui M.S., Huang Z.H., et al. Numerical investigation of the interactions between solitary waves and pile breakwaters using BGK-based methods[J]. Computers and Mathematics with Applications, 2010, 61(12), 3668–3677.
|
[5] |
徐天宇. 基于卷积神经网络的近海工程水动力学特征预测[D]. 杭州: 浙江大学, 2020.
Xu Tianyu. Prediction of hydrodynamic characteristics of offshore engineering based on convolutional neural network[D]. Hangzhou: Zhejiang University, 2020.
|
[6] |
周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229−1251. doi: 10.11897/SP.J.1016.2017.01229
Zhou Feiyan, Jin Linpeng, Dong Jun. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6): 1229−1251. doi: 10.11897/SP.J.1016.2017.01229
|
[7] |
赵西增, 徐天宇, 谢玉林, 等. 基于卷积神经网络的涵洞式直立堤波浪透射预测[J]. 力学学报, 2021, 53(2): 330−338. doi: 10.6052/0459-1879-20-235
Zhao Xizeng, Xu Tianyu, Xie Yulin, et al. Prediction of wave transmission of culvertbreakwater based on CNN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 330−338. doi: 10.6052/0459-1879-20-235
|
[8] |
Montes-Atenas G, Seguel F, Valencia A, et al. Predicting bubble size and bubble rate data in water and in froth flotation-like slurry from computational fluid dynamics (CFD) by applying deep neural networks (DNN)[J]. International Communications in Heat and Mass Transfer, 2016, 76: 197−201. doi: 10.1016/j.icheatmasstransfer.2016.05.031
|
[9] |
Wei Zhangping, Davison A. A convolutional neural networkbased model to predict nearshore waves and hydrodynamics[J]. Coastal Engineering, 2022, 171: 104044. doi: 10.1016/j.coastaleng.2021.104044
|
[10] |
Yao Z, Wang Z, Wang D, et al. An ensemble CNN-LSTM and GRU adaptive weighting model based improved sparrow search algorithm for predicting runoff using historical meteorological and runoff data as input[J]. Journal of Hydrology, 2023, 625: 129977.
|
[11] |
Formentin S M, Zanuttigh B, van der Meer J W. A neural network tool for predicting wave reflection, overtopping and transmission[J]. Coastal Engineering Journal, 2017, 59(1): 1750006.
|
[12] |
赵沛泓, 孙大鹏, 吴浩. 采用JADE-SVR方法研究波浪和开孔沉箱相互作用[J]. 水道港口, 2021, 42(2): 166−173. doi: 10.3969/j.issn.1005-8443.2021.02.003
Zhao Peihong, Sun Dapeng, Wu Hao. Investigating on the wave interaction with perforated caisson based on JADE-SVR machine[J]. Journal of Waterway and Harbor, 2021, 42(2): 166−173. doi: 10.3969/j.issn.1005-8443.2021.02.003
|
[13] |
Zanuttigh B, Formentin S M, van der Meer J W. Prediction of extreme and tolerable wave overtopping discharges through an advanced neural network[J]. Ocean Engineering, 2016, 127: 7−22. doi: 10.1016/j.oceaneng.2016.09.032
|
[14] |
Kim T, Lee W D, Kwon Y, et al. Prediction of wave transmission characteristics of low crested structures using artificial neural network[J]. Journal of Ocean Engineering and Technology, 2022, 36(5): 313−325. doi: 10.26748/KSOE.2022.024
|
[15] |
Li Qi, Shi Yaru, Lin Ruiqi, et al. A novel oil pipeline leakage detection method based on the sparrow search algorithm and CNN[J]. Measurement, 2022, 204: 112122.
|
[16] |
Chen Gonggui, Zhu Mengyuan, Huang Jing, et al. Short-term wind speed prediction with master-slave performance based on CNN-LSTM and improved POABP[J]. Engineering Letters, 2023, 31(2): 848−861.
|
[17] |
Li Xinhong, Guo Mengmeng, Zhang Renren, et al. A data-driven prediction model for maximum pitting corrosion depth of subsea oil pipelines using SSA-LSTM approach[J]. Ocean Engineering, 2022, 261: 112062. doi: 10.1016/j.oceaneng.2022.112062
|
[18] |
王军, 马小越, 张宇航, 等. 基于SSA-LSTM模型的黄河水位预测研究[J]. 人民黄河, 2023, 45(9): 65−69. doi: 10.3969/j.issn.1000-1379.2023.09.011
Wang Jun, Ma Xiaoyue, Zhang Yuhang, et al. Research on the prediction of the Yellow River water level based on SSA-LSTM model[J]. Yellow River, 2023, 45(9): 65−69. doi: 10.3969/j.issn.1000-1379.2023.09.011
|
[19] |
Xue Jiankai, Shen Bo. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22−34.
|
[20] |
Fan Guofeng, Li Yun, Zhang Xinyan, et al. Short-term loadforecasting based on a generalized regression neural network optimized by an improved sparrow search algorithm using the empirical wavelet decomposition method[J]. Energy Science & Engineering, 2023, 11(7): 2444−2468.
|
[21] |
Zhu Yucheng, Cao Xudong, Han Zhongting. An improved CNN employing SSA and its application in bearing fault diagnosis[C]//Proceedings of the IEEE 5th International Conference on Automation, Electronics and Electrical Engineering. Shenyang: IEEE, 2022: 714–718.
|
[22] |
张新生, 贺凯璐. 基于SSA-CNN的长距离矿浆管道临界流速预测[J]. 安全与环境学报, 2022, 22(5): 2524−2531.
Zhang Xinsheng, He Kailu. Prediction of critical velocity of long-distance slurry pipeline based on SSA-CNN[J]. Journal of Safety and Environment, 2022, 22(5): 2524−2531.
|
[23] |
邓斌, 尹龙斌, 黄姣凤, 等. 波浪与新型双排开孔圆筒防波堤相互作用三维数值模拟[J]. 力学学报, 2023, 55(4): 845−857. doi: 10.6052/0459-1879-22-545
Deng Bin, Yin Longbin, Huang Jiaofeng, et al. Three dimensional numerical simulation of wave interaction with a new type of doublerow perforated cylinder breakwater[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(4): 845−857. doi: 10.6052/0459-1879-22-545
|
[24] |
Wang Ran, Zhao Jianhui, Yang Huijin, et al. Inversion of soil moisture on farmland areas based on SSA-CNN using multi-source remote sensing data[J]. Remote Sensing, 2023, 15(10): 2515. doi: 10.3390/rs15102515
|
[25] |
Zhang R, Su J, Feng J. An extreme learning machine model based on adaptive multi-fusion chaotic sparrow search algorithm for regression and classification[J]. Evolutionary Intelligence, 2023: 1−20.
|
[26] |
Fathy A, Alanazi T M, Rezk H, et al. Optimal energy management of micro-grid using sparrow search algorithm[J]. Energy Reports, 2022, 8: 758−773.
|
[27] |
Liu Yang, Lu Yutong, Wang Yueqing, et al. A CNN-basedshock detection method in flow visualization[J]. Computers & Fluids, 2019, 184: 1−9.
|
[28] |
Yu Dingjun, Wang Hanli, Chen Peiqiu. Mixed pooling for convolutional neural networks[C]//Proceedings of the 9th International Conference. Shanghai: Springer, 2014: 364−375.
|
[29] |
Hinton G E, Srivastava N, Krizhevsky A, et al. Improving neural networks by preventing coadaptation of feature detectors[J]. Comput. ENCE 2012, 3: 212–223.
|
[30] |
Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929−1958.
|
[31] |
Gal Y, Ghahramani Z. A theoretically grounded application of dropout in recurrent neural networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona: Curran Associates Inc. , 2016: 1027−1035.
|
[32] |
周长春, 姜杰, 李谦, 等. 基于融合特征选择算法的钻速预测模型研究[J]. 钻探工程, 2022, 49(4): 31−40.
Zhou Changchun, Jiang Jie, Li Qian, et al. Research on drilling rate prediction model based on fusion feature selection algorithm[J]. Drilling Engineering, 2022, 49(4): 31−40.
|