Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 4
Jun.  2024
Turn off MathJax
Article Contents
Guo Guizheng,Li Gang,He Yijun, et al. Seasonal variability of submesoscale vertical heat transport in the Kuroshio Extension[J]. Haiyang Xuebao,2024, 46(4):23–33 doi: 10.12284/hyxb2024033
Citation: Guo Guizheng,Li Gang,He Yijun, et al. Seasonal variability of submesoscale vertical heat transport in the Kuroshio Extension[J]. Haiyang Xuebao,2024, 46(4):23–33 doi: 10.12284/hyxb2024033

Seasonal variability of submesoscale vertical heat transport in the Kuroshio Extension

doi: 10.12284/hyxb2024033
  • Received Date: 2023-11-24
  • Rev Recd Date: 2024-03-18
  • Available Online: 2024-05-16
  • Publish Date: 2024-06-30
  • Submesoscale processes associated with strong vertical velocities play significant roles in the vertical transport of tracers between the ocean surface and the interior, including heat, buoyancy, and mass. Based on the results of the (1/48)° LLC4320 model, this study investigates the seasonal variations of submesoscale vertical heat transport in the Kuroshio Extension. The results show that submesoscale vertical heat transport in the Kuroshio Extension exhibits distinct seasonal variations, with strong transport in spring and winter, and weaker transport in summer and autumn. The variation of net submesoscale vertical heat flux in the upper ocean is consistent with the trend of mixed layer depth, which shows overall upward submesoscale heat transport above the mixed layer and strong alternating positive and negative submesoscale vertical heat transport below the mixed layer, resulting in relatively small net submesoscale vertical heat transport. Coherent spectral analysis of vertical heat flux wavenumber-frequency suggests that submesoscale vertical heat transport below the mixed layer may be caused by linear internal waves, but the upward and downward vertical heat transports induced by linear internal waves counteract each other, leading to a reduced net vertical heat transport after averaging over the season.
  • loading
  • [1]
    McWilliams J C. Submesoscale currents in the ocean[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472(2189): 20160117. doi: 10.1098/rspa.2016.0117
    [2]
    Capet X, McWilliams J C, Molemaker M J, et al. Mesoscale to submesoscale transition in the California current system. Part I: flow structure, eddy flux, and observational tests[J]. Journal of Physical Oceanography, 2008, 38(1): 29−43. doi: 10.1175/2007JPO3671.1
    [3]
    Thomas L, Ferrari R. Friction, frontogenesis, and the stratification of the surface mixed layer[J]. Journal of Physical Oceanography, 2008, 38(11): 2501−2518. doi: 10.1175/2008JPO3797.1
    [4]
    Zhang Zhiwei, Tian Jiwei, Qiu Bo, et al. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea[J]. Scientific Reports, 2016, 6(1): 24349. doi: 10.1038/srep24349
    [5]
    Zhang Zhiwei, Liu Zhiyu, Richards K, et al. Elevated diapycnalmixing by a subthermocline eddy in the western equatorial Pacific[J]. Geophysical Research Letters, 2019, 46(5): 2628−2636. doi: 10.1029/2018GL081512
    [6]
    Zhang Zhengguang, Wang Wei, Qiu Bo. Oceanic mass transport by mesoscale eddies[J]. Science, 2014, 345(6194): 322−324. doi: 10.1126/science.1252418
    [7]
    Su Zhan, Wang Jinbo, Klein P, et al. Ocean submesoscales as a key component of the global heat budget[J]. Nature Communications, 2018, 9(1): 775. doi: 10.1038/s41467-018-02983-w
    [8]
    Zhang Zhiwei, Liu Yuelin, Qiu Bo, et al. Submesoscale inverse energy cascade enhances Southern Ocean eddy heat transport[J]. Nature Communications, 2023, 14(1): 1335. doi: 10.1038/s41467-023-36991-2
    [9]
    Liu Zhengyu, He Chengfei, Lu Feiyu. Local and remote responses of atmospheric and oceanic heat transports to climate forcing: compensation versus collaboration[J]. Journal of Climate, 2018, 31(16): 6445−6460. doi: 10.1175/JCLI-D-17-0675.1
    [10]
    Nummelin A, Li C, Hezel P J. Connecting ocean heat transport changes from the midlatitudes to the Arctic Ocean[J]. Geophysical Research Letters, 2017, 44(4): 1899−1908. doi: 10.1002/2016GL071333
    [11]
    Yang Haiyuan, Qiu Bo, Chang Ping, et al. Decadal variability of eddy characteristics and energetics in the kuroshio extension: unstable versus stable states[J]. Journal of Geophysical Research: Oceans, 2018, 123(9): 6653−6669. doi: 10.1029/2018JC014081
    [12]
    Su Zhan, Torres H, Klein P, et al. High-frequency submesoscale motions enhance the upward vertical heat transport in the global ocean[J]. Journal of Geophysical Research: Oceans, 2020, 125(9): e2020JC016544. doi: 10.1029/2020JC016544
    [13]
    Wang Qinyue, Dong Changming, Dong Jihai, et al. Submesoscale processes-induced vertical heat transport modulated by oceanic mesoscale eddies[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2022, 202: 105138. doi: 10.1016/j.dsr2.2022.105138
    [14]
    Dong Jihai, Fox-Kemper B, Zhang Hong, et al. The seasonality of submesoscale energy production, content, and cascade[J]. Geophysical Research Letters, 2020, 47(6): e2020GL087388. doi: 10.1029/2020GL087388
    [15]
    Rocha C B, Gille S T, Chereskin T K, et al. Seasonality of submesoscale dynamics in the kuroshio extension[J]. Geophysical Research Letters, 2016, 43(21): 11304−11311.
    [16]
    Pan Hao, Qiu Chunhua, Liang Hong, et al. Different vertical heat transport induced by submesoscale motions in the shelf and open sea of the northwestern South China Sea[J]. Frontiers in Marine Science, 2023, 10: 1236864. doi: 10.3389/fmars.2023.1236864
    [17]
    王青玥. 伴随海洋中尺度涡旋的亚中尺度过程及其对垂向热量输运的贡献[D]. 南京: 南京信息工程大学, 2023.

    Wang Qingyue. Submetascale processes associated with mesoscale eddies in the ocean and their contribution to vertical heat transport[D]. Nanjing: Nanjing University of Information Science and Technology, 2023.
    [18]
    Zhong Yishen, Bracco A. Submesoscale impacts on horizontal and vertical transport in the Gulf of Mexico[J]. Journal of Geophysical Research: Oceans, 2013, 118(10): 5651−5668. doi: 10.1002/jgrc.20402
    [19]
    Huang Xiaolong, Jing Zhiyou, Zheng Ruixi, et al. Dynamical analysis of submesoscale fronts associated with wind-forced offshore jet in the western South China Sea[J]. Acta Oceanologica Sinica, 2020, 39(11): 1−12.
    [20]
    Zhang Lei, Dong Jihai. Dynamic characteristics of a submesoscale front and associated heat fluxes over the northeastern South China Sea shelf[J]. Atmosphere-Ocean, 2021, 59(3): 190−200. doi: 10.1080/07055900.2021.1958741
    [21]
    Aparco-Lara J, Torres H S, Gomez-Valdes J. Impact of atmospheric cooling on the high-frequency submesoscale vertical heat flux[J]. Journal of Geophysical Research: Oceans, 2023, 128(9): e2023JC020029. doi: 10.1029/2023JC020029
    [22]
    Kara A B, Rochford P A, Hurlburt H E. Mixed layer depth variability over the global ocean[J]. Journal of Geophysical Research: Oceans, 2003, 108(C3): 3079.
    [23]
    Torres H S, Klein P, Menemenlis D, et al. Partitioning ocean motions into balanced motions and internal gravity waves: a modeling study in anticipation of future space missions[J]. Journal of Geophysical Research: Oceans, 2018, 123(11): 8084−8105. doi: 10.1029/2018JC014438
    [24]
    罗士浩, 经志友, 闫桐, 等. 黑潮延伸体海域次中尺度过程的季节变化研究[J]. 热带海洋学报, 2021, 40(1): 1−11.

    Luo Shihao, Jing Zhiyou, Yan Tong, et al. Seasonal variability of submesoscale flows in the Kuroshio Extension[J]. Journal of TropicalOceanography, 2021, 40(1): 1−11.
    [25]
    张雨辰, 张新城, 张金超, 等. 南海亚中尺度过程的时空特征与垂向热量输运研究[J]. 中国海洋大学学报, 2020, 50(12): 1−11.

    Zhang Yuchen, Zhang Xincheng, Zhang Jinchao, et al. Spatiotemporal characteristics and vertical heat transport of submesoscale processes in the South China Sea[J]. Periodical of Ocean University of China, 2020, 50(12): 1−11.
    [26]
    Liu Zhiying, Liao Guanghong, Hu Xiaokai, et al. Aspect ratio of eddies inferred from Argo floats and satellite altimeter data in the ocean[J]. Journal of Geophysical Research: Oceans, 2020, 125(1): e2019JC015555. doi: 10.1029/2019JC015555
    [27]
    Jing Zhiyou, Fox-Kemper B, Cao Haijin, et al. Submesoscale fronts and their dynamical processes associated with symmetric instability in the northwest Pacific subtropical ocean[J]. Journal of Physical Oceanography, 2021, 51(1): 83−100. doi: 10.1175/JPO-D-20-0076.1
    [28]
    Fox-Kemper B, Ferrari R, Hallberg R. Parameterization of mixed layer eddies. Part I: theory and diagnosis[J]. Journal of Physical Oceanography, 2008, 38(6): 1145−1165. doi: 10.1175/2007JPO3792.1
    [29]
    Rocha C B, Chereskin T K, Gille S T, et al. Mesoscale to submesoscale wavenumber spectra in drake passage[J]. Journal of Physical Oceanography, 2016, 46(2): 601−620. doi: 10.1175/JPO-D-15-0087.1
    [30]
    Yoo J G, Kim S Y, Kim H S. Spectral descriptions of submesoscale surface circulation in a coastal region[J]. Journal of Geophysical Research: Oceans, 2018, 123(6): 4224−4249. doi: 10.1029/2016JC012517
    [31]
    Cao Haijin, Jing Zhiyou. Submesoscale ageostrophic motions within and below the mixed layer of the northwestern Pacific Ocean[J]. Journal of Geophysical Research: Oceans, 2022, 127(2): e2021JC017812. doi: 10.1029/2021JC017812
    [32]
    Barkan R, Winters K B, McWilliams J C. Stimulated imbalance and the enhancement of eddy kinetic energy dissipation by internal waves[J]. Journal of Physical Oceanography, 2017, 47(1): 181−198. doi: 10.1175/JPO-D-16-0117.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (362) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return