Citation: | Guo Guizheng,Li Gang,He Yijun, et al. Seasonal variability of submesoscale vertical heat transport in the Kuroshio Extension[J]. Haiyang Xuebao,2024, 46(4):23–33 doi: 10.12284/hyxb2024033 |
[1] |
McWilliams J C. Submesoscale currents in the ocean[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472(2189): 20160117. doi: 10.1098/rspa.2016.0117
|
[2] |
Capet X, McWilliams J C, Molemaker M J, et al. Mesoscale to submesoscale transition in the California current system. Part I: flow structure, eddy flux, and observational tests[J]. Journal of Physical Oceanography, 2008, 38(1): 29−43. doi: 10.1175/2007JPO3671.1
|
[3] |
Thomas L, Ferrari R. Friction, frontogenesis, and the stratification of the surface mixed layer[J]. Journal of Physical Oceanography, 2008, 38(11): 2501−2518. doi: 10.1175/2008JPO3797.1
|
[4] |
Zhang Zhiwei, Tian Jiwei, Qiu Bo, et al. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea[J]. Scientific Reports, 2016, 6(1): 24349. doi: 10.1038/srep24349
|
[5] |
Zhang Zhiwei, Liu Zhiyu, Richards K, et al. Elevated diapycnalmixing by a subthermocline eddy in the western equatorial Pacific[J]. Geophysical Research Letters, 2019, 46(5): 2628−2636. doi: 10.1029/2018GL081512
|
[6] |
Zhang Zhengguang, Wang Wei, Qiu Bo. Oceanic mass transport by mesoscale eddies[J]. Science, 2014, 345(6194): 322−324. doi: 10.1126/science.1252418
|
[7] |
Su Zhan, Wang Jinbo, Klein P, et al. Ocean submesoscales as a key component of the global heat budget[J]. Nature Communications, 2018, 9(1): 775. doi: 10.1038/s41467-018-02983-w
|
[8] |
Zhang Zhiwei, Liu Yuelin, Qiu Bo, et al. Submesoscale inverse energy cascade enhances Southern Ocean eddy heat transport[J]. Nature Communications, 2023, 14(1): 1335. doi: 10.1038/s41467-023-36991-2
|
[9] |
Liu Zhengyu, He Chengfei, Lu Feiyu. Local and remote responses of atmospheric and oceanic heat transports to climate forcing: compensation versus collaboration[J]. Journal of Climate, 2018, 31(16): 6445−6460. doi: 10.1175/JCLI-D-17-0675.1
|
[10] |
Nummelin A, Li C, Hezel P J. Connecting ocean heat transport changes from the midlatitudes to the Arctic Ocean[J]. Geophysical Research Letters, 2017, 44(4): 1899−1908. doi: 10.1002/2016GL071333
|
[11] |
Yang Haiyuan, Qiu Bo, Chang Ping, et al. Decadal variability of eddy characteristics and energetics in the kuroshio extension: unstable versus stable states[J]. Journal of Geophysical Research: Oceans, 2018, 123(9): 6653−6669. doi: 10.1029/2018JC014081
|
[12] |
Su Zhan, Torres H, Klein P, et al. High-frequency submesoscale motions enhance the upward vertical heat transport in the global ocean[J]. Journal of Geophysical Research: Oceans, 2020, 125(9): e2020JC016544. doi: 10.1029/2020JC016544
|
[13] |
Wang Qinyue, Dong Changming, Dong Jihai, et al. Submesoscale processes-induced vertical heat transport modulated by oceanic mesoscale eddies[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2022, 202: 105138. doi: 10.1016/j.dsr2.2022.105138
|
[14] |
Dong Jihai, Fox-Kemper B, Zhang Hong, et al. The seasonality of submesoscale energy production, content, and cascade[J]. Geophysical Research Letters, 2020, 47(6): e2020GL087388. doi: 10.1029/2020GL087388
|
[15] |
Rocha C B, Gille S T, Chereskin T K, et al. Seasonality of submesoscale dynamics in the kuroshio extension[J]. Geophysical Research Letters, 2016, 43(21): 11304−11311.
|
[16] |
Pan Hao, Qiu Chunhua, Liang Hong, et al. Different vertical heat transport induced by submesoscale motions in the shelf and open sea of the northwestern South China Sea[J]. Frontiers in Marine Science, 2023, 10: 1236864. doi: 10.3389/fmars.2023.1236864
|
[17] |
王青玥. 伴随海洋中尺度涡旋的亚中尺度过程及其对垂向热量输运的贡献[D]. 南京: 南京信息工程大学, 2023.
Wang Qingyue. Submetascale processes associated with mesoscale eddies in the ocean and their contribution to vertical heat transport[D]. Nanjing: Nanjing University of Information Science and Technology, 2023.
|
[18] |
Zhong Yishen, Bracco A. Submesoscale impacts on horizontal and vertical transport in the Gulf of Mexico[J]. Journal of Geophysical Research: Oceans, 2013, 118(10): 5651−5668. doi: 10.1002/jgrc.20402
|
[19] |
Huang Xiaolong, Jing Zhiyou, Zheng Ruixi, et al. Dynamical analysis of submesoscale fronts associated with wind-forced offshore jet in the western South China Sea[J]. Acta Oceanologica Sinica, 2020, 39(11): 1−12.
|
[20] |
Zhang Lei, Dong Jihai. Dynamic characteristics of a submesoscale front and associated heat fluxes over the northeastern South China Sea shelf[J]. Atmosphere-Ocean, 2021, 59(3): 190−200. doi: 10.1080/07055900.2021.1958741
|
[21] |
Aparco-Lara J, Torres H S, Gomez-Valdes J. Impact of atmospheric cooling on the high-frequency submesoscale vertical heat flux[J]. Journal of Geophysical Research: Oceans, 2023, 128(9): e2023JC020029. doi: 10.1029/2023JC020029
|
[22] |
Kara A B, Rochford P A, Hurlburt H E. Mixed layer depth variability over the global ocean[J]. Journal of Geophysical Research: Oceans, 2003, 108(C3): 3079.
|
[23] |
Torres H S, Klein P, Menemenlis D, et al. Partitioning ocean motions into balanced motions and internal gravity waves: a modeling study in anticipation of future space missions[J]. Journal of Geophysical Research: Oceans, 2018, 123(11): 8084−8105. doi: 10.1029/2018JC014438
|
[24] |
罗士浩, 经志友, 闫桐, 等. 黑潮延伸体海域次中尺度过程的季节变化研究[J]. 热带海洋学报, 2021, 40(1): 1−11.
Luo Shihao, Jing Zhiyou, Yan Tong, et al. Seasonal variability of submesoscale flows in the Kuroshio Extension[J]. Journal of TropicalOceanography, 2021, 40(1): 1−11.
|
[25] |
张雨辰, 张新城, 张金超, 等. 南海亚中尺度过程的时空特征与垂向热量输运研究[J]. 中国海洋大学学报, 2020, 50(12): 1−11.
Zhang Yuchen, Zhang Xincheng, Zhang Jinchao, et al. Spatiotemporal characteristics and vertical heat transport of submesoscale processes in the South China Sea[J]. Periodical of Ocean University of China, 2020, 50(12): 1−11.
|
[26] |
Liu Zhiying, Liao Guanghong, Hu Xiaokai, et al. Aspect ratio of eddies inferred from Argo floats and satellite altimeter data in the ocean[J]. Journal of Geophysical Research: Oceans, 2020, 125(1): e2019JC015555. doi: 10.1029/2019JC015555
|
[27] |
Jing Zhiyou, Fox-Kemper B, Cao Haijin, et al. Submesoscale fronts and their dynamical processes associated with symmetric instability in the northwest Pacific subtropical ocean[J]. Journal of Physical Oceanography, 2021, 51(1): 83−100. doi: 10.1175/JPO-D-20-0076.1
|
[28] |
Fox-Kemper B, Ferrari R, Hallberg R. Parameterization of mixed layer eddies. Part I: theory and diagnosis[J]. Journal of Physical Oceanography, 2008, 38(6): 1145−1165. doi: 10.1175/2007JPO3792.1
|
[29] |
Rocha C B, Chereskin T K, Gille S T, et al. Mesoscale to submesoscale wavenumber spectra in drake passage[J]. Journal of Physical Oceanography, 2016, 46(2): 601−620. doi: 10.1175/JPO-D-15-0087.1
|
[30] |
Yoo J G, Kim S Y, Kim H S. Spectral descriptions of submesoscale surface circulation in a coastal region[J]. Journal of Geophysical Research: Oceans, 2018, 123(6): 4224−4249. doi: 10.1029/2016JC012517
|
[31] |
Cao Haijin, Jing Zhiyou. Submesoscale ageostrophic motions within and below the mixed layer of the northwestern Pacific Ocean[J]. Journal of Geophysical Research: Oceans, 2022, 127(2): e2021JC017812. doi: 10.1029/2021JC017812
|
[32] |
Barkan R, Winters K B, McWilliams J C. Stimulated imbalance and the enhancement of eddy kinetic energy dissipation by internal waves[J]. Journal of Physical Oceanography, 2017, 47(1): 181−198. doi: 10.1175/JPO-D-16-0117.1
|