Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 2
May  2024
Turn off MathJax
Article Contents
Li Jiejun,Liu Hongna,Wang Xiaojing, et al. The study on the early diagenetic processes in REY-rich sediments in Southeast Pacific Ocean and its indicative significance[J]. Haiyang Xuebao,2024, 46(2):40–51 doi: 10.12284/hyxb2024007
Citation: Li Jiejun,Liu Hongna,Wang Xiaojing, et al. The study on the early diagenetic processes in REY-rich sediments in Southeast Pacific Ocean and its indicative significance[J]. Haiyang Xuebao,2024, 46(2):40–51 doi: 10.12284/hyxb2024007

The study on the early diagenetic processes in REY-rich sediments in Southeast Pacific Ocean and its indicative significance

doi: 10.12284/hyxb2024007
  • Received Date: 2023-10-24
  • Rev Recd Date: 2023-12-10
  • Available Online: 2024-05-31
  • Publish Date: 2024-05-29
  • As potential mineral resources, rare earth elements (REY) and yttrium enriched sediments in the deep sea have attracted a lot of attention in recent years. It has been shown by studies that the enrichment process of REY is most likely to occur at the sediment-water interface (SWI), however studies on the early diagenetic processes in REY-enriched sediments are in general lacking. In this paper, we collected two short sediment cores in REY-enriched sediments in the Southeast Pacific Ocean, then we had conducted an in-depth analysis on the early diagenesis process of REY at SWI and its influence on the enrichment mechanism of REY in deep-sea sediment. The low Fe, Mn concentration and high Mo, U and V concentration in pore-water indicated that the sediment cores were in oxic environment. Compared to the REY in overlying water column, the dissolved REY in pore-water characterized by a middle rare earth elements (MREE). In sediment, phosphate phase is the main phase of REY, while the distribution pattern of REY in pore-water may be controlled by the phosphate content in sediments. Our results show that during the early diagenetic processes, the REY initially combined with Fe/Mn phase and other phases re-released into the pore-water, which is subsequently adsorbed by and eventually buried with the phosphate phase. Therefore, the early diagenetic process is an important mechanism of REY enrichment in deep sea sediments.
  • loading
  • [1]
    Elshkaki A. Sustainability of emerging energy and transportation technologies is impacted by the coexistence of minerals in nature[J]. Communications Earth & Environment, 2021, 2(1): 186.
    [2]
    Hatch G P. Dynamics in the global market for rare earths[J]. Elements, 2012, 8(5): 341−346. doi: 10.2113/gselements.8.5.341
    [3]
    Chakhmouradian A R, Wall F. Rare earth elements: minerals, mines, magnets (and more)[J]. Elements, 2012, 8(5): 333−340. doi: 10.2113/gselements.8.5.333
    [4]
    Balaram V. Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact[J]. Geoscience Frontiers, 2019, 10(4): 1285−1303. doi: 10.1016/j.gsf.2018.12.005
    [5]
    Zhou Tiancheng, Shi Xuefa, Huang Mu, et al. The influence of hydrothermal fluids on the REY-rich deep-sea sediments in the Yupanqui Basin, eastern South Pacific Ocean: constraints from bulk sediment geochemistry and mineralogical characteristics[J]. Minerals, 2020, 10(12): 1141. doi: 10.3390/min10121141
    [6]
    Szamałek K, Konopka G, Zglinicki K, et al. New potential source of rare earth elements[J]. Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 2013, 29(4): 59−76.
    [7]
    Kato Y, Fujinaga K, Nakamura K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements[J]. Nature Geoscience, 2011, 4(8): 535−539. doi: 10.1038/ngeo1185
    [8]
    石学法, 毕东杰, 黄牧, 等. 深海稀土分布规律与成矿作用[J]. 地质通报, 2021, 40(2/3): 195−208.

    Shi Xuefa, Bi Dongjie, Huang Mu, et al. Distribution and metallogenesis of deep-sea rare earth elements[J]. Geological Bulletin of China, 2021, 40(2/3): 195−208.
    [9]
    Bi Dongjie, Shi Xuefa, Huang Mu, et al. Geochemical and mineralogical characteristics of deep-sea sediments from the western North Pacific Ocean: constraints on the enrichment processes of rare earth elements[J]. Ore Geology Reviews, 2021, 138: 104318. doi: 10.1016/j.oregeorev.2021.104318
    [10]
    Takaya Y, Yasukawa K, Kawasaki T, et al. The tremendous potential of deep-sea mud as a source of rare-earth elements[J]. Scientific Reports, 2018, 8(1): 5763. doi: 10.1038/s41598-018-23948-5
    [11]
    Kon Y, Hoshino M, Sanematsu K, et al. Geochemical characteristics of apatite in heavy REE-rich Deep-Sea Mud from Minami-Torishima Area, southeastern Japan[J]. Resource Geology, 2014, 64(1): 47−57. doi: 10.1111/rge.12026
    [12]
    Labs-Hochstein J, MacFadden B J. Quantification of diagenesis in Cenozoic sharks: elemental and mineralogical changes[J]. Geochimica et Cosmochimica Acta, 2006, 70(19): 4921−4932. doi: 10.1016/j.gca.2006.07.009
    [13]
    Elderfield H, Pagett R. Rare earth elements in ichthyoliths: variations with redox conditions and depositional environment[J]. Science of the Total Environment, 1986, 49: 175−197. doi: 10.1016/0048-9697(86)90239-1
    [14]
    Ren Jiangbo, Liu Yan, Wang Fenlian, et al. Mechanism and influencing factors of REY enrichment in deep-sea sediments[J]. Minerals, 2021, 11(2): 196. doi: 10.3390/min11020196
    [15]
    Liao Jianlin, Sun Xiaoming, Li Dengfeng, et al. New insights into nanostructure and geochemistry of bioapatite in REE-rich deep-sea sediments: LA-ICP-MS, TEM, and Z-contrast imaging studies[J]. Chemical Geology, 2019, 512: 58−68. doi: 10.1016/j.chemgeo.2019.02.039
    [16]
    Elderfield H, Sholkovitz E R. Rare earth elements in the pore waters of reducing nearshore sediments[J]. Earth and Planetary Science Letters, 1987, 82(3/4): 280−288.
    [17]
    Haley B A, Klinkhammer G P, McManus J. Rare earth elements in pore waters of marine sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1265−1279. doi: 10.1016/j.gca.2003.09.012
    [18]
    Liu Hongna, Li Li, Wang Xiaojing, et al. Determination of Rare Earth Elements in pore water samples of marine sediments using an offline preconcentration method[J]. Archives of Environmental Contamination and Toxicology, 2021, 81(4): 553−563. doi: 10.1007/s00244-020-00793-0
    [19]
    Hatje V, Bruland K W, Flegal A R. Determination of rare earth elements after pre-concentration using NOBIAS-chelate PA-1®resin: method development and application in the San Francisco Bay plume[J]. Marine Chemistry, 2014, 160: 34−41. doi: 10.1016/j.marchem.2014.01.006
    [20]
    Dick H J B, Lin Jian, Schouten H. An ultraslow-spreading class of ocean ridge[J]. Nature, 2003, 426(6965): 405−412. doi: 10.1038/nature02128
    [21]
    Rouxel O, Shanks III W C, Bach W, et al. Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9−10 N[J]. Chemical Geology, 2008, 252(3/4): 214−227.
    [22]
    Lupton J E, Craig H. Excess 3He in oceanic basalts: evidence for terrestrial primordial helium[J]. Earth and Planetary Science Letters, 1975, 26(2): 133−139. doi: 10.1016/0012-821X(75)90080-1
    [23]
    Faure V, Speer K. Deep circulation in the eastern South Pacific Ocean[J]. Journal of Marine Research, 2012, 70(5): 748−778. doi: 10.1357/002224012806290714
    [24]
    周天成, 石学法. 东南太平洋蒂基海盆深海富稀土沉积富集机制[C]//中国稀土学会2021学术年会论文摘要集. 成都: 中国稀土学会, 2021.

    Zhou Tiancheng, Shi Xuefa. Genesis of REY-rich deep-sea sediments in the Tiki Basin, eastern South Pacific Ocean[C]//Abstracts of the Annual Academic Conference of the Chinese Society of Rare Earths. Chengdu: The Chinese Society of Rare Earths, 2021.
    [25]
    刘洪娜. 东南太平洋富稀土区沉积物−海水界面稀土元素的地球化学特征研究[D]. 青岛: 自然资源部第一海洋研究所, 2021.

    Liu Hongna. The geochemical recycling of rare earth elements at sediment-seawater interface in the REY-rich sediments of southeastern Pacific Ocean[D]. Qingdao: First Institute of Oceanography, Ministry of Natural Resources, 2021.
    [26]
    王汾连, 何高文, 任江波, 等. 太平洋不同海域深海沉积物的稀土元素地球化学特征对比研究[J]. 岩石学报, 2023, 39(3): 719−730. doi: 10.18654/1000-0569/2023.03.06

    Wang Fenlian, He Gaowen, Ren Jiangbo, et al. Comparative study on the geochemical characteristics of rare earth elements in deep-sea sediments from different regions of the Pacific Ocean[J]. Acta Petrologica Sinica, 2023, 39(3): 719−730. doi: 10.18654/1000-0569/2023.03.06
    [27]
    Zhou Tiancheng, Shi Xuefa, Huang Mu, et al. Genesis of REY-rich deep-sea sediments in the Tiki Basin, eastern South Pacific Ocean: evidence from geochemistry, mineralogy and isotope systematics[J]. Ore Geology Reviews, 2021, 138: 104330. doi: 10.1016/j.oregeorev.2021.104330
    [28]
    Molina-Kescher M, Hathorne E C, Osborne A H, et al. The influence of basaltic islands on the oceanic REE distribution: a case study from the tropical South Pacific[J]. Frontiers in Marine Science, 2018, 5: 50. doi: 10.3389/fmars.2018.00050
    [29]
    Grenier M, Jeandel C, Lacan F, et al. From the subtropics to the central equatorial Pacific Ocean: neodymium isotopic composition and rare earth element concentration variations[J]. Journal of Geophysical Research: Oceans, 2013, 118(2): 592−618. doi: 10.1029/2012JC008239
    [30]
    刘洪娜, 李力, 任艺君, 等. 南太平洋富稀土海区海水中的溶解态稀土元素空间分布特征研究[J]. 海洋学报, 2023, 45(1): 1−12.

    Liu Hongna, Li Li, Ren Yijun, et al. The spatial distribution characteristics of dissolved rare earth elements in seawater of REY-enriched region in South Pacific Ocean[J]. Haiyang Xuebao, 2023, 45(1): 1−12.
    [31]
    Wang B S, Lee C P, Ho T Y. Trace metal determination in natural waters by automated solid phase extraction system and ICP-MS: the influence of low level Mg and Ca[J]. Talanta, 2014, 128: 337−344. doi: 10.1016/j.talanta.2014.04.077
    [32]
    Rousseau T C C, Sonke J E, Chmeleff J, et al. Rare earth element analysis in natural waters by multiple isotope dilution – sector field ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(4): 573−584. doi: 10.1039/c3ja30332b
    [33]
    Garcia-Solsona E, Jeandel C. Balancing rare earth element distributions in the northwestern Mediterranean Sea[J]. Chemical Geology, 2020, 532: 119372. doi: 10.1016/j.chemgeo.2019.119372
    [34]
    Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific, 1985.
    [35]
    任艺君. 长江口低氧区沉积物−海水界面氧化还原敏感元素的响应机制研究[D]. 青岛: 自然资源部第一海洋研究所, 2019.

    Ren Yijun. Study on response mechanism of redox sensitive elements at sediment-seawater interface in low oxygen zone of Yangtze River Estuary[D]. Qingdao: First Institute of Oceanography, Ministry of Natural Resources, 2019.
    [36]
    Wang Xiaojing, Li Li, Liu Jihua, et al. Early diagenesis of redox-sensitive trace metals in the northern Okinawa Trough[J]. Acta Oceanologica Sinica, 2019, 38(12): 14−25. doi: 10.1007/s13131-019-1512-5
    [37]
    Middelburg J J, Levin L A. Coastal hypoxia and sediment biogeochemistry[J]. Biogeosciences, 2009, 6(7): 1273−1293. doi: 10.5194/bg-6-1273-2009
    [38]
    Homoky W B, Conway T M, John S G, et al. Iron colloids dominate sedimentary supply to the ocean interior[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(13): e2016078118.
    [39]
    Sani R K, Peyton B M, Amonette J E, et al. Reduction of uranium(VI) under sulfate-reducing conditions in the presence of Fe(III)-(hydr) oxides[J]. Geochimica et Cosmochimica Acta, 2004, 68(12): 2639−2648. doi: 10.1016/j.gca.2004.01.005
    [40]
    Deng Yinan, Ren Jiangbo, Guo Qingjun, et al. Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific[J]. Scientific Reports, 2017, 7(1): 16539. doi: 10.1038/s41598-017-16379-1
    [41]
    Deng Yinan, Guo Qingjun, Zhu Jiang, et al. Significant contribution of seamounts to the oceanic rare earth elements budget[J]. Gondwana Research, 2022, 112: 71−81. doi: 10.1016/j.gr.2022.09.016
    [42]
    Abbott A N, Haley B A, McManus J, et al. The sedimentary flux of dissolved rare earth elements to the ocean[J]. Geochimica et Cosmochimica Acta, 2015, 154: 186−200. doi: 10.1016/j.gca.2015.01.010
    [43]
    Sholkovitz E R, Piepgras D J, Jacobsen S B. The pore water chemistry of rare earth elements in Buzzards Bay sediments[J]. Geochimica et Cosmochimica Acta, 1989, 53(11): 2847−2856. doi: 10.1016/0016-7037(89)90162-2
    [44]
    Hatje V, Bruland K W, Flegal A R. Increases in anthropogenic gadolinium anomalies and rare earth element concentrations in San Francisco Bay over a 20 year record[J]. Environmental Science & Technology, 2016, 50(8): 4159−4168.
    [45]
    Bau M, Dulski P. Anthropogenic origin of positive gadolinium anomalies in river waters[J]. Earth and Planetary Science Letters, 1996, 143(1/4): 245−255.
    [46]
    Nozaki Y, Zhang Jing, Amakawa H. The fractionation between Y and Ho in the marine environment[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 329−340.
    [47]
    De Baar H J W, Bruland K W, Schijf J, et al. Low cerium among the dissolved rare earth elements in the central North Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 2018, 236: 5−40. doi: 10.1016/j.gca.2018.03.003
    [48]
    车宏, 胡邦琦, 丁雪, 等. 西太平洋深海沉积物孔隙水稀土元素地球化学特征及意义[J]. 海洋地质与第四纪地质, 2021, 41(1): 75−86.

    Che Hong, Hu Bangqi, Ding Xue, et al. Rare earth element geochemistry characteristics and implications of pore-water from deep sea sediment in Western Pacific Ocean[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 75−86.
    [49]
    Prakash L S, Ray D, Paropkari A L, et al. Distribution of REEs and yttrium among major geochemical phases of marine Fe-Mn-oxides: comparative study between hydrogenous and hydrothermal deposits[J]. Chemical Geology, 2012, 312−313: 127−137. doi: 10.1016/j.chemgeo.2012.03.024
    [50]
    Takebe M. Carriers of rare earth elements in Pacific deep-sea sediments[J]. The Journal of Geology, 2005, 113(2): 201−215. doi: 10.1086/427669
    [51]
    Liao Jianlin, Chen Jieyun, Sun Xiaoming, et al. Quantifying the controlling mineral phases of rare-earth elements in deep-sea pelagic sediments[J]. Chemical Geology, 2022, 595: 120792. doi: 10.1016/j.chemgeo.2022.120792
    [52]
    Hsieh Y T, Bridgestock L, Scheuermann P P, et al. Barium isotopes in mid-ocean ridge hydrothermal vent fluids: a source of isotopically heavy Ba to the ocean[J]. Geochimica et Cosmochimica Acta, 2021, 292: 348−363. doi: 10.1016/j.gca.2020.09.037
    [53]
    Hsieh Y T, Henderson G M. Barium stable isotopes in the global ocean: tracer of Ba inputs and utilization[J]. Earth and Planetary Science Letters, 2017, 473: 269−278. doi: 10.1016/j.jpgl.2017.06.024
    [54]
    Yasukawa K, Nakamura K, Fujinaga K, et al. Tracking the spatiotemporal variations of statistically independent components involving enrichment of rare-earth elements in deep-sea sediments[J]. Scientific Reports, 2016, 6(1): 29603. doi: 10.1038/srep29603
    [55]
    Yasukawa K, Liu Hanjie, Fujinaga K, et al. Geochemistry and mineralogy of REY-rich mud in the eastern Indian Ocean[J]. Journal of Asian Earth Sciences, 2014, 93: 25−36. doi: 10.1016/j.jseaes.2014.07.005
    [56]
    Toyoda K, Tokonami M. Diffusion of rare-earth elements in fish teeth from deep-sea sediments[J]. Nature, 1990, 345(6276): 607−609. doi: 10.1038/345607a0
    [57]
    孙懿, 石学法, 鄢全树, 等. 中印度洋海盆富稀土沉积地球化学特征及富集机制研究[J]. 海洋学报, 2022, 44(11): 42−62.

    Sun Yi, Shi Xuefa, Yan Quanshu, et al. The study on geochemical characteristics and enrichment mechanism of deep sea REY-rich sediments in the Central Indian Ocean Basin[J]. Haiyang Xuebao, 2022, 44(11): 42−62.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article views (178) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return