Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Li Huimin,He Yijun,Wang Chen, et al. Study of global ocean wave characteristics based on spaceborne SAR image cross-spectrum[J]. Haiyang Xuebao,2024, 46(3):1–7 doi: 10.12284/hyxb2023040
Citation: Li Huimin,He Yijun,Wang Chen, et al. Study of global ocean wave characteristics based on spaceborne SAR image cross-spectrum[J]. Haiyang Xuebao,2024, 46(3):1–7 doi: 10.12284/hyxb2023040

Study of global ocean wave characteristics based on spaceborne SAR image cross-spectrum

doi: 10.12284/hyxb2023040
  • Received Date: 2023-08-03
  • Rev Recd Date: 2023-12-19
  • Available Online: 2022-11-14
  • Spaceborne synthetic aperture radar (SAR) is able to collect observations under all kinds of weather during day and night. Such measurements have been proven to provide significant data support for the ocean dynamics study. While SAR imaging of ocean waves is a highly nonlinear process, leading the wave signal missing along the azimuth direction. The image cross-spectrum provides a way to help investigate the ocean wave features particularly for their propagation direction. In this study, we extended a recently defined parameter based on SAR image cross-spectrum and analyzed the correlation of different wave scales with the local wind speed. The range peak wavenumber (wavelength) extracted from the range spectral profile is also demonstrated at the global scale based on about 4 million SAR images. It is found that this new spectral parameter could to some extent reflect the coupling between wind and waves. The global pattern of range peak wavenumber also illustrates evident seasonality.
  • loading
  • [1]
    Toba Y. Local balance in the air-sea boundary processes: I. On the growth process of wind waves[J]. Journal of Oceanography, 1972, 28(3): 109−120. doi: 10.1007/BF02109772
    [2]
    陈戈, 杨杰, 张本涛, 等. 新一代海洋科学卫星的思考与展望[J]. 中国海洋大学学报(自然科学版), 2019, 49(10): 110−117.

    Chen Ge, Yang Jie, Zhang Bentao, et al. Thoughts and prospects on the new generation of marine science satellites[J]. Periodical of Ocean University of China, 2019, 49(10): 110−117.
    [3]
    Hauser D, Tison C, Amiot T, et al. SWIM: the first spaceborne wave scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 3000−3014. doi: 10.1109/TGRS.2017.2658672
    [4]
    Young I R. Seasonal variability of the global ocean wind and wave climate[J]. International Journal of Climatology, 1999, 19(9): 931−950. doi: 10.1002/(SICI)1097-0088(199907)19:9<931::AID-JOC412>3.0.CO;2-O
    [5]
    Young I R, Zieger S, Babanin A V. Global trends in wind speed and wave height[J]. Science, 2011, 332(6028): 451−455. doi: 10.1126/science.1197219
    [6]
    Hanley K E, Belcher S E, Sullivan P P. A global climatology of wind-wave interaction[J]. Journal of Physical Oceanography, 2010, 40(6): 1263−1282. doi: 10.1175/2010JPO4377.1
    [7]
    Stopa J E, Cheung K F, Tolman H L, et al. Patterns and cycles in the climate forecast system reanalysis wind and wave data[J]. Ocean Modelling, 2013, 70: 207−220. doi: 10.1016/j.ocemod.2012.10.005
    [8]
    Chen Ge, Chapron B, Ezraty R, et al. A global view of swell and wind sea climate in the ocean by satellite altimeter and scatterometer[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(11): 1849−1859. doi: 10.1175/1520-0426(2002)019<1849:AGVOSA>2.0.CO;2
    [9]
    Jiang Haoyu, Chen Ge. A global view on the swell and wind sea climate by the jason-1 mission: a revisit[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(8): 1833−1841. doi: 10.1175/JTECH-D-12-00180.1
    [10]
    Shimura T, Mori N, Mase H. Future projections of extreme ocean wave climates and the relation to tropical cyclones: ensemble experiments of MRI-AGCM3.2H[J]. Journal of Climate, 2015, 28(24): 9838−9856. doi: 10.1175/JCLI-D-14-00711.1
    [11]
    Portilla-Yandún J. The global signature of ocean wave spectra[J]. Geophysical Research Letters, 2018, 45(1): 267−276. doi: 10.1002/2017GL076431
    [12]
    杨劲松. 合成孔径雷达海面风场、海浪和内波遥感技术[D]. 青岛: 中国海洋大学, 2001.

    Yang Jingsong. SAR remote sensing of sea surface wind field, ocean waves and internal waves [D]. Qingdao: Ocean University of China, 2001.
    [13]
    Stopa J E, Ardhuin F, Husson R, et al. Swell dissipation from 10 years of Envisat advanced synthetic aperture radar in wave mode[J]. Geophysical Research Letters, 2016, 43(7): 3423−3430. doi: 10.1002/2015GL067566
    [14]
    Ardhuin F, Collard F, Chapron B, et al. Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A[J]. Geophysical Research Letters, 2015, 42(7): 2317−2325. doi: 10.1002/2014GL062940
    [15]
    Li Xiaoming. A new insight from space into swell propagation and crossing in the global oceans[J]. Geophysical Research Letters, 2016, 43(10): 5202−5209. doi: 10.1002/2016GL068702
    [16]
    Li Huimin, Chapron B, Mouche A, et al. A new ocean SAR cross-spectral parameter: definition and directional property using the global sentinel-1measurements[J]. Journal of Geophysical Research: Oceans, 2019, 124(3): 1566−1577. doi: 10.1029/2018JC014638
    [17]
    Li Huimin, Stopa J, Mouche A, et al. Assessment of ocean wave spectrum using global Envisat/ASAR data and hindcast simulation[J]. Remote Sensing of Environment, 2021, 264: 112614. doi: 10.1016/j.rse.2021.112614
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (345) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return