Citation: | Li Jiagang,Huang Bigui,Liu Lejun, et al. Identification of hard-thin layers on the seabed or shallow sediments using geophysical data: A case study in the Liwan pipeline route, northern South China Sea[J]. Haiyang Xuebao,2022, 44(9):100–108 doi: 10.12284/hyxb2022111 |
[1] |
吴海京, 年永吉. 南海东部几种典型海底地貌特征的研究与认识[J]. 地球物理学进展, 2017, 32(2): 919−926. doi: 10.6038/pg20170264
Wu Haijing, Nian Yongji. Research and cognition for several typical seabed features in the eastern of the South China Sea[J]. Progress in Geophysics, 2017, 32(2): 919−926. doi: 10.6038/pg20170264
|
[2] |
Li Xishuang, Li Xinzhong, Zhao Qiang, et al. The occurrence, acoustic characteristics, and significance of submerged reefs on the continental shelf edge and upper slope, northern South China Sea[J]. Continental Shelf Research, 2015, 100: 11−24. doi: 10.1016/j.csr.2015.03.006
|
[3] |
王琳. 乐东22-1/15-1油气管线路由区工程地质灾害研究[D]. 青岛: 中国海洋大学, 2007, 17-19.
Wang Lin. Research on the hazards of engineering geology about the route of Ledong 22-1/15-1 proposed pipeline[D]. Qingdao: Ocean University of China, 2007: 17−19.
|
[4] |
陈岱新, 郝高建, 王涛, 等. 莺歌海中部区域硬质海底特征及其工程影响[J]. 海洋地质前沿, 2016, 32(9): 47−52, 63. doi: 10.16028/j.1009-2722.2016.09007
Chen Daixin, Hao Gaojian, Wang Tao, et al. Characteristics of hard seafloor in central Yinggehai and its engineering significance[J]. Marine Geology Frontiers, 2016, 32(9): 47−52, 63. doi: 10.16028/j.1009-2722.2016.09007
|
[5] |
徐梓辰, 金衍, 洪国斌, 等. 基于近钻头振动数据的海底硬质地层探测方法[J]. 船海工程, 2019, 48(4): 112−116. doi: 10.3963/j.issn.1671-7953.2019.04.025
Xu Zichen, Jin Yan, Hong Guobin, et al. Detection method of seabed hard strata based on near-bit vibration data[J]. Ship & Ocean Engineering, 2019, 48(4): 112−116. doi: 10.3963/j.issn.1671-7953.2019.04.025
|
[6] |
Jackson D R, Richardson M D. High-Frequency Seafloor Acoustics[M]. New York: Springer, 2007: 131−142.
|
[7] |
Berkovitch A, Belfer I, Hassin Y, et al. Diffraction imaging by multifocusing[J]. Geophysics, 2009, 74(6): WCA75−WCA81. doi: 10.1190/1.3198210
|
[8] |
Lee S H, Kim K H. Side-scan sonar characteristics and manganese nodule abundance in the clarion-clipperton fracture zones, NE equatorial Pacific[J]. Marine Georesources & Geotechnology, 2004, 22(1/2): 103−114.
|
[9] |
潘国富, 付晓明, 荀诤慷, 等. 侧扫声纳在海底光缆维护工程中的应用[J]. 工程地球物理学报, 2004, 1(5): 389−394. doi: 10.3969/j.issn.1672-7940.2004.05.001
Pan Guofu, Fu Xiaoming, Xu Zhengkang, et al. Side scan sonar applications in undersea fiber-optic cable maintenance projects[J]. Chinese Journal of Engineering Geophysics, 2004, 1(5): 389−394. doi: 10.3969/j.issn.1672-7940.2004.05.001
|
[10] |
Collier J S, Humber S R. Time-lapse side-scan sonar imaging of bleached coral reefs: a case study from the Seychelles[J]. Remote Sensing of Environment, 2007, 108(4): 339−356. doi: 10.1016/j.rse.2006.11.029
|
[11] |
Kumagai H, Tsukioka S, Yamamoto H, et al. Hydrothermal plumes imaged by high-resolution side-scan sonar on a cruising AUV, Urashima[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(12): Q12013.
|
[12] |
Hogan K A, Dowdeswell J A, Mienert J, et al. New insights into slide processes and seafloor geology revealed by side-scan imagery of the massive Hinlopen slide, Arctic Ocean margin[J]. Geo-Marine Letters, 2013, 33(5): 325−343. doi: 10.1007/s00367-013-0330-6
|
[13] |
Bryant R S. Side scan sonar for hydrography-an evaluation by the Canadian hydrographic service[J]. The International Hydrographic Review, 2015, 52(1): 43−56.
|
[14] |
Powers J, Brewer S K, Long J M, et al. Evaluating the use of side-scan sonar for detecting freshwater mussel beds in turbid river environments[J]. Hydrobiologia, 2015, 743(1): 127−137. doi: 10.1007/s10750-014-2017-z
|
[15] |
王晓, 王爱学, 蒋廷臣, 等. 侧扫声呐图像应用领域综述[J]. 测绘通报, 2019(1): 1−4. doi: 10.13474/j.cnki.11-2246.2019.0001
Wang Xiao, Wang Aixue, Jiang Tingchen, et al. Review of application areas for side scan sonar image[J]. Bulletin of Surveying and Mapping, 2019(1): 1−4. doi: 10.13474/j.cnki.11-2246.2019.0001
|
[16] |
周兴华, 姜小俊, 史永忠. 侧扫声纳和浅地层剖面仪在杭州湾海底管线检测中的应用[J]. 海洋测绘, 2007, 27(4): 64−67. doi: 10.3969/j.issn.1671-3044.2007.04.019
Zhou Xinghua, Jiang Xiaojun, Shi Yongzhong. Application of side scan sonar and sub-bottom profile in the checking of submerged pipeline in Hangzhou Bay[J]. Hydrographic Surveying and Charting, 2007, 27(4): 64−67. doi: 10.3969/j.issn.1671-3044.2007.04.019
|
[17] |
董庆亮, 欧阳永忠, 陈岳英, 等. 侧扫声纳和多波束测深系统组合探测海底目标[J]. 海洋测绘, 2009, 29(5): 51−53. doi: 10.3969/j.issn.1671-3044.2009.05.015
Dong Qingliang, Ouyang Yongzhong, Chen Yueying, et al. Measuring bottom of sea target with side scan sonar and multibeam sounding system[J]. Hydrographic Surveying and Charting, 2009, 29(5): 51−53. doi: 10.3969/j.issn.1671-3044.2009.05.015
|
[18] |
年永吉, 朱友生, 陈强, 等. 流花深水区块典型滑坡特征的研究与认识[J]. 地球物理学进展, 2014, 29(3): 1412−1417. doi: 10.6038/pg20140357
Nian Yongji, Zhu Yousheng, Chen Qiang, et al. The research and cognition of typical submarine landslide characteristics of Liuhua deepwater block[J]. Progress in Geophysics, 2014, 29(3): 1412−1417. doi: 10.6038/pg20140357
|
[19] |
卢胜周, 彭华, 马秀敏, 等. 侧扫声呐在琼州海峡跨海通道工程物探中的应用[J]. 地质论评, 2015, 61(S1): 89−90.
Lu Shengzhou, Peng Hua, Ma Xiumin, et al. Application of side-scan sonar in geophysical prospecting of Qiongzhou Strait cross-sea channel engineering[J]. Geological Review, 2015, 61(S1): 89−90.
|
[20] |
Degraer S, Moerkerke G, Rabaut M, et al. Very-high resolution side-scan sonar mapping of biogenic reefs of the tube-worm Lanice conchilega[J]. Remote Sensing of Environment, 2008, 112(8): 3323−3328. doi: 10.1016/j.rse.2007.12.012
|
[21] |
Clarke J E H, Mayer L A, Wells D E. Shallow-water imaging multibeam sonars: A new tool for investigating seafloor processes in the coastal zone and on the continental shelf[J]. Marine Geophysical Researches, 1996, 18(6): 607−629. doi: 10.1007/BF00313877
|
[22] |
Hewitt A, Salisbury R, Wilson J. Using multibeam echosounder backscatter to characterize seafloor features[J]. Sea Technology, 2010, 51(9): 10−13.
|
[23] |
Brown C J, Todd B J, Kostylev V E, et al. Image-based classification of multibeam sonar backscatter data for objective surficial sediment mapping of Georges Bank, Canada[J]. Continental Shelf Research, 2011, 31(2): S110−S119. doi: 10.1016/j.csr.2010.02.009
|
[24] |
Hamilton L J, Parnum I. Acoustic seabed segmentation from direct statistical clustering of entire multibeam sonar backscatter curves[J]. Continental Shelf Research, 2011, 31(2): 138−148. doi: 10.1016/j.csr.2010.12.002
|
[25] |
Micallef A, Le Bas T P, Huvenne V A I, et al. A multi-method approach for benthic habitat mapping of shallow coastal areas with high-resolution multibeam data[J]. Continental Shelf Research, 2012, 39−40: 14−26. doi: 10.1016/j.csr.2012.03.008
|
[26] |
McGonigle C, Grabowski J H, Brown C J, et al. Detection of deep water benthic macroalgae using image-based classification techniques on multibeam backscatter at Cashes Ledge, Gulf of Maine, USA[J]. Estuarine, Coastal and Shelf Science, 2011, 91(1): 87−101. doi: 10.1016/j.ecss.2010.10.016
|
[27] |
Yang Yong, He Gaowen, Ma Jinfeng, et al. Acoustic quantitative analysis of ferromanganese nodules and cobalt-rich crusts distribution areas using EM122 multibeam backscatter data from deep-sea basin to seamount in western Pacific Ocean[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2020, 161: 103281. doi: 10.1016/j.dsr.2020.103281
|
[28] |
De Beukelaer S M, MacDonald I R, Guinnasso Jr N L, et al. Distinct side-scan sonar, RADARSAT SAR, and acoustic profiler signatures of gas and oil seeps on the Gulf of Mexico slope[J]. Geo-Marine Letters, 2003, 23(3/4): 177−186.
|
[29] |
Lafferty B, Quinn R, Breen C. A side-scan sonar and high-resolution chirp sub-bottom profile study of the natural and anthropogenic sedimentary record of lower lough erne, northwestern Ireland[J]. Journal of Archaeological Science, 2006, 33(6): 756−766. doi: 10.1016/j.jas.2005.10.007
|
[30] |
Nakamura K, Toki T, Mochizuki N, et al. Discovery of a new hydrothermal vent based on an underwater, high-resolution geophysical survey[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2013, 74: 1−10. doi: 10.1016/j.dsr.2012.12.003
|