Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
Xu Wei,Liu Bilin,Chen Xinjun, et al. Geographical differences and their relationship with sea surface temperature of trace elements in the eye lenses of Jumbo flying squid (Dosidicus gigas)[J]. Haiyang Xuebao,2021, 43(6):90–97 doi: 10.12284/hyxb2021102
Citation: Xu Wei,Liu Bilin,Chen Xinjun, et al. Geographical differences and their relationship with sea surface temperature of trace elements in the eye lenses of Jumbo flying squid (Dosidicus gigas)[J]. Haiyang Xuebao,2021, 43(6):90–97 doi: 10.12284/hyxb2021102

Geographical differences and their relationship with sea surface temperature of trace elements in the eye lenses of Jumbo flying squid (Dosidicus gigas)

doi: 10.12284/hyxb2021102
  • Received Date: 2021-01-31
  • Rev Recd Date: 2021-02-27
  • Available Online: 2021-04-29
  • Publish Date: 2021-06-30
  • Samples of Jumbo flying squid (Dosidicus gigas) were collected from Chinese squid jigging vessels in the high seas of Ecuador, Peru and Chile in the southeast Pacific Ocean in 2015 and 2017. The trace elements in the eye lenses of D. gigas were measured to study the geographical differences and their relationship with sea surface temperature. The results showed that elements such as Mg25, Ni60, Cu63, Sr88 and Ba137 in the peripheral part of eye lenses of D. gigas in the high seas of Ecuador, Peru and Chile were significant difference, while there were no significant differences between each two sea areas in the elements of Na23, Al27, Si29, P31, Ca43, Mn55, Zn66 and Pb. Except for Sr88, Ba137, Fe57 and Ni60, which showed significantly linear negative correlations with SST (p<0.05), there were no significant correlations with SST in the other elements (p>0.05). Sr88, Ba137, Fe57 and Ni60 could be regarded as indicator elements of the ambient temperature of D. gigas, and Ba137 could also be regarded as indicator element of the water depth and upwelling. Consequently, trace elements in eye lenses could be used to reconstruct the habitat environment of cephalopod.
  • loading
  • [1]
    Jereb P, Roper C F E. Cephalopods of the World: an Annotated and Illustrated Catalogue of Cephalopod Species Known to Date[M]. Rome: FAO, 2010: 315−318.
    [2]
    Keyl F, Argüelles J, Mariátegui L, et al. A hypothesis on range expansion and spatio-temporal shifts in size-at-maturity of jumbo squid (Dosidicus gigas) in the eastern Pacific Ocean[J]. California Cooperative Oceanic Fisheries Investigations Report, 2008, 49: 119−128.
    [3]
    Zeidberg L D, Robison B H. Invasive range expansion by the Humboldt squid, Dosidicus gigas, in the eastern North Pacific[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 104(31): 12948−12950.
    [4]
    Waluda C M, Yamashiro C, Rodhouse P G. Influence of the ENSO cycle on the light-fishery for Dosidicus gigas in the Peru Current: an analysis of remotely sensed data[J]. Fisheries Research, 2006, 79(1/2): 56−63.
    [5]
    Argüelles J, Rodhouse P G, Villegas P, et al. Age, growth and population structure of the jumbo flying squid Dosidicus gigas in Peruvian waters[J]. Fisheries Research, 2001, 54(1): 51−61. doi: 10.1016/S0165-7836(01)00380-0
    [6]
    Liu Bilin, Chen Xinjun, Chen Yong, et al. Geographic variation in statolith trace elements of the Humboldt squid, Dosidicus gigas, in high seas of Eastern Pacific Ocean[J]. Marine Biology, 2013, 160(11): 2853−2862. doi: 10.1007/s00227-013-2276-7
    [7]
    Taipe A, Yamashiro C, Mariategui L, et al. Distribution and concentrations of jumbo flying squid (Dosidicus gigas) off the Peruvian coast between 1991 and 1999[J]. Fisheries Research, 2001, 54(1): 21−32. doi: 10.1016/S0165-7836(01)00377-0
    [8]
    Nicol J A C. The Eyes of Fishes[M]. Oxford: Oxford University Press, 1989.
    [9]
    Horwitz J. The function of alpha-crystallin[J]. Investigative Ophthalmology & Visual Science, 1993, 34(1): 10−22.
    [10]
    Gillanders B M. Trace metals in four structures of fish and their use for estimates of stock structure[J]. Fishery Bulletin-National Oceanic and Atmospheric Administration, 2001, 99(3): 410−419.
    [11]
    Ferenbaugh J K. Elemental analysis of otoliths and eye lenses in the assessment of Steller Sea lion diets[D]. Texas: Texas Tech University, 2007.
    [12]
    Liu Bilin, Chen Xinjun, Chen Yong, et al. Trace elements in the statoliths of jumbo flying squid off the Exclusive Economic Zones of Chile and Peru[J]. Marine Ecology: Progress Series, 2011, 429: 93−101. doi: 10.3354/meps09106
    [13]
    Ikeda Y, Arai N, Sakamoto W, et al. Relationship between statoliths and environmental variables in cephalopod[J]. International Journal of PIXE, 1996, 6(1/2): 339−345.
    [14]
    Arkhipkin A I, Campana S E, Fitzgerald J, et al. Spatial and temporal variation in elemental signatures of statoliths from the Patagonian longfin squid (Loligo gahi)[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61(7): 1212−1224. doi: 10.1139/f04-075
    [15]
    Yatsu A, Mochioka N, Morishita K, et al. Strontium/calcium ratios in statoliths of the neon flying squid, Ommastrephes bartrami (Cephalopoda), in the North Pacific Ocean[J]. Marine Biology, 1998, 131(2): 275−282. doi: 10.1007/s002270050320
    [16]
    Doubleday Z A, Pecl G T, Semmens J M, et al. Stylet elemental signatures indicate population structure in a holobenthic octopus species, Octopus pallidus[J]. Marine Ecology Progress Series, 2008, 371: 1−10. doi: 10.3354/meps07722
    [17]
    Napoleão P, Pinheiro T, Reis C S. Element characterization of the vestigial shell of Octopus vulgaris Cuvier, 1797[J]. Boletín, Instituto Español de Oceanografía, 2003, 19(1/4): 509−512.
    [18]
    Northern T J. Investigating the post mortem applications of hard parts from two common New Zealand Squid Species: Onykia ingens and Nototodarus sloanii[D]. Dunedin, New Zealand: University of Otago, 2016.
    [19]
    方舟. 基于角质颚的北太平洋柔鱼渔业生态学研究[D]. 上海: 上海海洋大学, 2016.

    Fang Zhou. Fisheries ecology of neon flying squid Ommastrephes bartramii in North Pacific Ocean based on beak[D]. Shanghai: Shanghai Ocean University, 2016.
    [20]
    Liu Bilin, Chen Yong, Chen Xinjun. Spatial difference in elemental signatures within early ontogenetic statolith for identifying Jumbo flying squid natal origins[J]. Fisheries Oceanography, 2015, 24(4): 335−346. doi: 10.1111/fog.12112
    [21]
    Zumholz K, Hansteen T H, Hillion F, et al. Elemental distribution in cephalopod statoliths: NanoSIMS provides new insights into nano-scale structure[J]. Reviews in Fish Biology and Fisheries, 2007, 17(2): 487−491.
    [22]
    Ikeda Y, Arai N, Kidokoro H, et al. Strontium: calcium ratios in statoliths of Japanese common squid Todarodes pacificus (Cephalopoda: Ommastrephidae) as indicators of migratory behaviour[J]. Marine Ecology Progress Series, 2003, 251: 169−179. doi: 10.3354/meps251169
    [23]
    Dove S G, Kingsford M J. Use of otoliths and eye lenses for measuring trace-metal incorporation in fishes: a biogeographic study[J]. Marine Biology, 1998, 130(3): 377−387. doi: 10.1007/s002270050258
    [24]
    Kingsford M J, Gillanders B M. Variation in concentrations of trace elements in otoliths and eye lenses of a temperate reef fish, Parma microlepis, as a function of depth, spatial scale, and age[J]. Marine Biology, 2000, 137(3): 403−414. doi: 10.1007/s002270000304
    [25]
    Sturm M. Migration studies of fish by measurement of strontium isotope ratios and multi-elemental patterns in otoliths using LA-ICP-MS[D]. Vienna: University of Natural Resources and Applied Life Sciences, 2008.
    [26]
    金岳. 基于硬组织的中国近海枪乌贼渔业生物学研究[D]. 上海: 上海海洋大学, 2018.

    Jin Yue. Fishery biology of Loliginidae in China Seas based on hard tissues[D]. Shanghai: Shanghai Ocean University, 2018.
    [27]
    Zong Keqing, Klemd R, Yuan Yu, et al. The assembly of Rodinia: the correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB)[J]. Precambrian Research, 2017, 290: 32−48. doi: 10.1016/j.precamres.2016.12.010
    [28]
    Soto-Jiménez M F. Trace element trophic transfer in aquatic food webs[J]. Hidrobiológica, 2011, 21(3): 239−248.
    [29]
    Zumholz K, Hansteen T H, Klügel A, et al. Food effects on statolith composition of the common cuttlefish (Sepia officinalis)[J]. Marine Biology, 2006, 150(2): 237−244. doi: 10.1007/s00227-006-0342-0
    [30]
    Rooker J R, Secor D H, Zdanowicz V S, et al. Discrimination of northern bluefin tuna from nursery areas in the Pacific Ocean using otolith chemistry[J]. Marine Ecology Progress Series, 2001, 218: 275−282. doi: 10.3354/meps218275
    [31]
    Ashford J R, Jones C M, Hofman E, et al. Can otolith elemental signatures record the capture site of Patagonian toothfish (Dissostichus eleginoides), a fully marine fish in the southern ocean?[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62(12): 2832−2840. doi: 10.1139/f05-191
    [32]
    Yamane K, Shirai K, Nagakura Y, et al. Spatial variation of otolith elemental composition of the Pacific herring Clupea pallasii in northern Japan[J]. Aquatic Biology, 2010, 10: 283−290. doi: 10.3354/ab00291
    [33]
    Swart P K, Elderfield H, Greaves M J. A high-resolution calibration of Sr/Ca thermometry using the Caribbean coral Montastraea annularis[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(11): 1−11.
    [34]
    Zacherl D C. Spatial and temporal variation in statolith and protoconch trace elements as natural tags to track larval dispersal[J]. Marine Ecology Progress Series, 2005, 290: 145−163. doi: 10.3354/meps290145
    [35]
    Campana S E. Chemistry and composition of fish otoliths: pathways, mechanisms and applications[J]. Marine Ecology Progress Series, 1999, 188: 263−297. doi: 10.3354/meps188263
    [36]
    Ikeda Y, Arai N, Sakamoto W, et al. Preliminary report on PIXE analysis for trace elements of Octopus dofleini statoliths[J]. Fisheries Science, 1999, 65(1): 161−162. doi: 10.2331/fishsci.65.161
    [37]
    Zumholz K, Klügel A, Hansteen T H, et al. Statolith microchemistry traces the environmental history of the boreoatlantic armhook squid Gonatus fabricii[J]. Marine Ecology Progress Series, 2007, 333: 195−204. doi: 10.3354/meps333195
    [38]
    Ikeda Y, Arai N, Sakamoto W, et al. Comparison on trace elements in squid statoliths of different species’ origin: as available key for taxonomic and phylogenetic study[J]. International Journal of PIXE, 1997, 7(3/4): 141−146.
    [39]
    Ikeda Y, Yatsu A, Arai N, et al. Concentration of statolith trace elements in the jumbo fying squid during El Niño and non-El Niño years in the eastern Pacic[J]. Journal of the Marine Biological Association of the United Kingdom, 2002, 82: 863−866.
    [40]
    Zacherl D C, Manríquez P H, Paradis G, et al. Trace elemental fingerprinting of gastropod statoliths to study larval dispersal trajectories[J]. Marine Ecology Progress Series, 2003, 248: 297−303. doi: 10.3354/meps248297
    [41]
    Bath G E, Thorrold S R, Jones C M, et al. Strontium and barium uptake in aragonitic otoliths of marine fish[J]. Geochimica et Cosmochimica Acta, 2000, 64(10): 1705−1714. doi: 10.1016/S0016-7037(99)00419-6
    [42]
    Zumholz K, Hansteen T H, Piatkowski U, et al. Influence of temperature and salinity on the trace element incorporation into statoliths of the common cuttlefish (Sepia officinalis)[J]. Marine Biology, 2007, 151(4): 1321−1330. doi: 10.1007/s00227-006-0564-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article views (222) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return