Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
Nie Zuofu,Tao Chunhui,Shen Jinsong, et al. 3D transient electromagnetics forward modeling with complex topography and structure: A case study of the TAG hydrothermal field, Mid-Atlantic Ridge[J]. Haiyang Xuebao,2021, 43(6):145–156 doi: 10.12284/hyxb2021086
Citation: Nie Zuofu,Tao Chunhui,Shen Jinsong, et al. 3D transient electromagnetics forward modeling with complex topography and structure: A case study of the TAG hydrothermal field, Mid-Atlantic Ridge[J]. Haiyang Xuebao,2021, 43(6):145–156 doi: 10.12284/hyxb2021086

3D transient electromagnetics forward modeling with complex topography and structure: A case study of the TAG hydrothermal field, Mid-Atlantic Ridge

doi: 10.12284/hyxb2021086
  • Received Date: 2020-07-24
  • Rev Recd Date: 2020-12-04
  • Available Online: 2021-04-25
  • Publish Date: 2021-06-30
  • It is crucial to evaluate seafloor massive sulfides (SMS) in terms of their special distribution. Transient electromagnetic method (TEM) is ideal for land mineral deposits prospecting, but the complicated seafloor topography, inner structure of sulfide deposits and measuring conditions in the hydrothermal field pose a great challenge to its application in the ocean. In order to verify the application potential of TEM in deep-sea exploration, a 3D forward modeling scheme was developed with finite element method, combining with bathymetry data and drilling results. The method was then applied to the TAG hydrothermal field, Mid-Atlantic Ridge, and the result was well fitted with acquired TEM data. By comparing the forward simulation results under different instrument positions, attitudes and altitude, we found that the coincident loop system could effectively detect the active TAG mound ore body when the altitude was less than 60 meters. Complex seafloor topography and how the instrument was being towed could significantly disturb the early time response, while the instrument attitude also made an influence on the detected signal. Therefore, it was necessary to combine the bathymetry data, instrument positioning data and attitude data in the research area to better interpret the measured TEM responses.
  • loading
  • [1]
    Rona P A, McGregor B A, Betzer P R, et al. Anomalous water temperatures over Mid-Atlantic Ridge crest at 26° North latitude[J]. Deep Sea Research and Oceanographic Abstracts, 1975, 22(9): 611−618. doi: 10.1016/0011-7471(75)90048-0
    [2]
    Rona P A, Thompson G, Mottl M J, et al. Hydrothermal activity at the Trans-Atlantic Geotraverse hydrothermal field, Mid-Atlantic ridge crest at 26°N[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B13): 11365−11377. doi: 10.1029/JB089iB13p11365
    [3]
    陶春辉. 洋中脊多金属硫化物勘查方法与技术[M]. 北京: 科学出版社, 2018.

    Tao Chunhui. Exploration Methods and Techniques for Polymetallic Sulfide on the Mid-Ocean Ridges[M]. Beijing: Science Press, 2018.
    [4]
    Humphris S E, Herzig P M, Miller D J, et al. The internal structure of an active sea-floor massive sulphide deposit[J]. Nature, 1995, 377(6551): 713−716. doi: 10.1038/377713a0
    [5]
    Lehrmann B, Stobbs I J, Lusty P A J, et al. Insights into extinct seafloor massive sulfide mounds at the TAG, Mid-Atlantic Ridge[J]. Minerals, 2018, 8(7): 302. doi: 10.3390/min8070302
    [6]
    Edwards R N, Chave A D. A transient electric dipole-dipole method for mapping the conductivity of the sea floor[J]. Geophysics, 1986, 51(4): 984−987. doi: 10.1190/1.1442156
    [7]
    Cheesman S J, Edwards R N, Chavez A D. On the theory of sea-floor conductivity mapping using transient electromagnetic systems[J]. Geophysics, 1987, 52(2): 204−217. doi: 10.1190/1.1442296
    [8]
    Everett M E, Edwards R N, Cheesman S J, et al. Interpretation of seafloor electromagnetic data in applied geophysics[C]//Proceedings of the First International Symposium, Applied Electromagnetics in Materials. Tokyo: Applied Electromagnetics in Materials, 1989: 143−153.
    [9]
    Swidinsky A, Hölz S, Jegen M. On mapping seafloor mineral deposits with central loop transient electromagnetics[J]. Geophysics, 2012, 77(3): E171−E184. doi: 10.1190/geo2011-0242.1
    [10]
    Hölz S, Jegen M, Petersen S, et al. How to find buried and inactive seafloor massive sulfides using transient electromagnetics—a case study from the Palinuro Seamount in the Tyrrhenian Sea[R]. Dassel, Germany: EMTF Meeting, 2015.
    [11]
    Tao Chunhui, XiongWei, Xi Zhenzhu, et al. TEM investigations of South Atlantic Ridge 13.2°S hydrothermal area[J]. Acta Oceanologica Sinica, 2013(12): 70−76.
    [12]
    熊威, 陶春辉, 邓显明. 电磁方法在海底多金属硫化物探测中的应用[J]. 海洋学研究, 2013, 31(2): 59−64.

    Xiong Wei, Tao Chunhui, Deng Xianming. Application of electromagnetic methods in detection of seafloor polymetallic sulfides[J]. Journal of Marine Sciences, 2013, 31(2): 59−64.
    [13]
    席振铢, 李瑞雪, 宋刚, 等. 深海热液金属硫化物矿电性结构[J]. 地球科学, 2016, 41(8): 1395−1401.

    Xi Zhenzhu, Li Ruixue, Song Gang, et al. Electrical structure of sea-floor hydrothermal sulfide deposits[J]. Earth Science, 2016, 41(8): 1395−1401.
    [14]
    李瑞雪, 王鹤, 席振铢, 等. 深海热液硫化物矿体3D瞬变电磁正演[J]. 地球物理学报, 2016, 59(12): 4505−4512.

    Li Ruixue, Wang He, Xi Zhenzhu, et al. The 3D transient electromagnetic forward modeling of volcanogenic massive sulfide ore deposits[J]. Chinese Journal of Geophysics, 2016, 59(12): 4505−4512.
    [15]
    Zhang Bo, Yin Changchun, Ren Xiuyan, et al. Adaptive finite element for 3D time-domain airborne electromagnetic modeling based on hybrid posterior error estimation[J]. Geophysics, 2018, 83(2): WB71−WB79. doi: 10.1190/geo2017-0544.1
    [16]
    殷长春, 惠哲剑, 张博, 等. 起伏海底地形时间域海洋电磁三维自适应正演模拟[J]. 地球物理学报, 2019, 62(5): 1942−1953.

    Yin Changchun, Hui Zhejian, Zhang Bo, et al. 3D adaptive forward modeling for time-domain marine CSEM over topographic seafloor[J]. Chinese Journal of Geophysics, 2019, 62(5): 1942−1953.
    [17]
    Peng Ronghua, Han Bo, Hu Xiangyun. Exploration of seafloor massive sulfide deposits with fixed-offset marine controlled source electromagnetic method: numerical simulations and the effects of electrical anisotropy[J]. Minerals, 2020, 10(5): 457. doi: 10.3390/min10050457
    [18]
    Hölz S, Haroon A, Reeck K, et al. MARTEMIS−A new EM tool for the detection of buried seafloor massive sulfides[R]. 24th International EM Induction Workshop, Helsingør, Denmark. 2018.
    [19]
    Haroon A, Hölz S, Gehrmann R A S, et al. Marine dipole-dipole controlled source electromagnetic and coincident-loop transient electromagnetic experiments to detect seafloor massive sulphides: effects of three-dimensional bathymetry[J]. Geophysical Journal International, 2018, 215(3): 2156−2171. doi: 10.1093/gji/ggy398
    [20]
    Humphris S E, Tivey M K, Tivey M A. The Trans-Atlantic Geotraverse hydrothermal field: a hydrothermal system on an active detachment fault[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 121: 8−16. doi: 10.1016/j.dsr2.2015.02.015
    [21]
    Hannington M D, Galley A G, Herzig P M, et al. Comparison of the TAG mound and stockwork complex with Cyprus-type massive sulfide deposits[J]. Proceedings of the Ocean Drilling Program: Scientific Results, 1998, 158: 389−415.
    [22]
    Murton B J, Lehrmann B, Dutrieux A M, et al. Geological fate of seafloor massive sulphides at the TAG hydrothermal field (Mid-Atlantic Ridge)[J]. Ore Geology Reviews, 2019, 107: 903−925. doi: 10.1016/j.oregeorev.2019.03.005
    [23]
    Gehrmann R A S, North L A, Graber S, et al. Marine mineral exploration with controlled source electromagnetics at the TAG hydrothermal field, 26°N Mid-Atlantic ridge[J]. Geophysical Research Letters, 2019, 46(11): 5808−5816. doi: 10.1029/2019GL082928
    [24]
    Gehrmann R A S, North L J, Lehrmann B, et al. Rock physic samples from TAG, Mid-Atlantic Ridge, and various onshore samples[Z]. PANGAEA, 2019.
    [25]
    Archie G. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Transactions of the American Institute of Mining Metallurgical and Petroleum Engineers, 1942, 146: 54−62.
    [26]
    Spagnoli G, Hannington M, Bairlein K, et al. Electrical properties of seafloor massive sulfides[J]. Geo-Marine Letters, 2016, 36(3): 235−245. doi: 10.1007/s00367-016-0439-5
    [27]
    汤井田, 任政勇, 化希瑞. Coulomb规范下地电磁场的自适应有限元模拟的理论分析[J]. 地球物理学报, 2007, 50(5): 1584−1594.

    Tang Jingtian, Ren Zhengyong, Hua Xirui. Theoretical analysis of geo-electromagnetic modeling on Coulomb gauged potentials by adaptive finite element method[J]. Chinese Journal of Geophysics, 2007, 50(5): 1584−1594.
    [28]
    Badea E A, Everett M E, Newman G A, et al. Finite-element analysis of controlled-source electromagnetic induction using Coulomb-gauged potentials[J]. Geophysics, 2001, 66(3): 786−799. doi: 10.1190/1.1444968
    [29]
    Haber E, Ascher U, Oldenburg D W. 3D forward modelling of time domain electromagnetic data[J]. SEG Technical Program Expanded Abstracts, 2002, 21(1): 2478.
    [30]
    Um E S, Harris J M, Alumbaugh D L. 3D time-domain simulation of electromagnetic diffusion phenomena: a finite-element electric-field approach[J]. Geophysics, 2010, 75(4): F115−F126. doi: 10.1190/1.3473694
    [31]
    Petersen S. Bathymetric data products from AUV dives during METEOR cruise M127 (TAG Hydrothermal Field, Atlantic)[Z]. PANGAEA, 2019.
    [32]
    Gould N I M, Scott J A, Hu Yifan. A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations[J]. ACM Transactions on Mathematical Software, 2007, 33(2): 10. doi: 10.1145/1236463.1236465
    [33]
    米萨克 N 纳比吉安. 勘查地球物理电磁法 第一卷: 理论[M]. 赵经祥, 王艳君, 译. 北京: 地质出版社, 1992.

    Nabighian M N. Electromagnetic Methods in Applied Geophysics Volume One: Theory[M]. Zhao Jingxiang, Wang Yanjun, trans. Beijing: Geological Publishing House, 1992.
    [34]
    牛之琏. 时间域电磁法原理[M]. 长沙: 中南大学出版社, 2007.

    Niu Zhilian. Principle of Time Domain Electromagnetic Method[M]. Changsha: Central South University Press, 2007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views (321) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return