Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
Xu Huan,Ren Yibin. Detecting sea ice of Bohai Sea using SAR images based on a hybrid loss U-Net model[J]. Haiyang Xuebao,2021, 43(6):157–170 doi: 10.12284/hyxb2021084
Citation: Xu Huan,Ren Yibin. Detecting sea ice of Bohai Sea using SAR images based on a hybrid loss U-Net model[J]. Haiyang Xuebao,2021, 43(6):157–170 doi: 10.12284/hyxb2021084

Detecting sea ice of Bohai Sea using SAR images based on a hybrid loss U-Net model

doi: 10.12284/hyxb2021084
  • Received Date: 2020-07-18
  • Rev Recd Date: 2020-09-23
  • Available Online: 2021-04-02
  • Publish Date: 2021-06-30
  • The Bohai Sea is an important economic zone of China. Sea ice has been a significant threat to the human activities around the Bohai Sea. As the imaging capability of synthetic aperture radar (SAR) is independent of sun illumination and cloud condition, it is of great significance to detect the sea ice of the Bohai Sea from SAR images. Due to the limitation of the feature extraction mechanism, the accuracies of traditional sea ice detection methods need to be improved. Deep learning has a strong self-learning ability and is suitable for image detection. Here, we employ the well-known deep learning framework, U-Net, as the basic structure, and design a hybrid loss function to optimize the U-Net model, forming a hybrid loss U-Net model for sea ice detection in the Bohai Sea. The Sentinel-1 dual-polarization (VV and VH) SAR images are the inputs of the model. We compare the hybrid loss U-Net model with several traditional methods (Pulse Coupled Neural Network, Markov Random Field and Watershed Algorithm) and deep learning method based on CNN. Experiments show that the hybrid loss U-Net-based model achieves 97.567%, 98.769%, 98.767% and 98.771% in IoU, F1_Score, Precision and Recall respectively, outperforming the other methods. Compared with VV single-polarized input, the detection results of dual-polarized information input are 0.375%, 0.111%, 0.639% and 0.740% higher in F1_Score, Precision, Recall and IoU respectively. The detection results of the hybrid loss model are 1.129%, 0.947%, 1.794% and 2.231% higher than those of the non-hybrid loss function in F1_Score, Precision, Recall and IoU respectively. The model could effectively detect details such as ice water line, inter-ice water and ice gap. Our model is applied to detect the sea ice of a whole SAR image in the Bohai Sea, which can provide technical supports for sea ice monitoring, sea ice change analysis and sea ice prediction.
  • loading
  • [1]
    Mori M, Kosaka Y, Watanabe M, et al. A reconciled estimate of the influence of Arctic sea-ice loss on recent Eurasian cooling[J]. Nature Climate Change, 2019, 9(2): 123−129. doi: 10.1038/s41558-018-0379-3
    [2]
    Olonscheck D, Mauritsen T, Notz D. Arctic sea-ice variability is primarily driven by atmospheric temperature fluctuations[J]. Nature Geoscience, 2019, 12(6): 430−434. doi: 10.1038/s41561-019-0363-1
    [3]
    自然资源部. 中国海洋灾害公报[R]. 北京: 自然资源部, 2010−2019.

    Ministry of Natural Resources. China’s maritime disaster communique[R]. Beijing: Ministry of Natural Resources, 2010−2019.
    [4]
    Soh L K, Tsatsoulis C. Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2): 780−795. doi: 10.1109/36.752194
    [5]
    王利亚, 何宜军, 张彪, 等. HY-2卫星扫描微波辐射计数据反演北极海冰漂移速度[J]. 海洋学报, 2017, 39(9): 110−120.

    Wang Liya, He Yijun, Zhang Biao, et al. Retrieval of Arctic sea ice drift using HY-2 Satellite scanning microwave radiometer data[J]. Haiyang Xuebao, 2017, 39(9): 110−120.
    [6]
    Dabboor M, Geldsetzer T. Towards sea ice classification using simulated RADARSAT constellation mission compact polarimetric SAR imagery[J]. Remote Sensing of Environment, 2014, 140: 189−195. doi: 10.1016/j.rse.2013.08.035
    [7]
    Fetterer F, Bertoia C, Ye Jingping. Multi-year ice concentration from RADARSAT[C]//IGARSS’97.1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing—A Scientific Vision for Sustainable Development. Singapore: IEEE, 1997, 1: 402−404.
    [8]
    Su Hua, Wang Yunpeng, Xiao Jie, et al. Improving MODIS sea ice detectability using gray level co-occurrence matrix texture analysis method: A case study in the Bohai Sea[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 85: 13−20. doi: 10.1016/j.isprsjprs.2013.07.010
    [9]
    Zakhvatkina N Y, Alexandrov V Y, Johannessen O M, et al. Classification of sea ice types in ENVISAT synthetic aperture radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 51(5): 2587−2600.
    [10]
    李小娜, 张杰, 戴永寿, 等. 灰度共生矩阵纹理特征对SAR海冰漂移监测的增强性能研究[J]. 海洋科学, 2018, 42(4): 9−17.

    Li Xiaona, Zhang Jie, Dai Yongshou, et al. Research on the enhanced performance of texture feature for sea ice drift monitoring based on gray level co-occurrence matrices[J]. Marine Sciences, 2018, 42(4): 9−17.
    [11]
    Soh L K, Tsatsoulis C, Gineris D, et al. ARKTOS: An intelligent system for SAR sea ice image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(1): 229−248. doi: 10.1109/TGRS.2003.817819
    [12]
    Ochilov S, Clausi D A. Operational SAR sea-ice image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4397−4408. doi: 10.1109/TGRS.2012.2192278
    [13]
    郑敏薇, 李晓明, 任永政. 高分3号星载合成孔径雷达极地海冰自动检测方法研究[J]. 海洋学报, 2018, 40(9): 113−124.

    Zheng Minwei, Li Xiaoming, Ren Yongzheng. The method study on automatic sea ice detection with GaoFen-3 synthetic aperture radar data in polar regions[J]. Haiyang Xuebao, 2018, 40(9): 113−124.
    [14]
    张明, 吕晓琪, 张晓峰, 等. 结合纹理特征的SVM海冰分类方法研究[J]. 海洋学报, 2018, 40(11): 149−156.

    Zhang Ming, Lü Xiaoqi, Zhang Xiaofeng, et al. Research on SVM sea ice classification based on texture features[J]. Haiyang Xuebao, 2018, 40(11): 149−156.
    [15]
    李晓明, 张强. 星载合成孔径雷达北极海冰覆盖观测[J]. 海洋学报, 2019, 41(4): 145−146.

    Li Xiaoming, Zhang Qiang. Observation of Arctic sea ice cover by spaceborne synthetic aperture radar[J]. Haiyang Xuebao, 2019, 41(4): 145−146.
    [16]
    Leigh S, Wang Zhijie, Clausi D A. Automated ice–water classification using dual polarization SAR satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(9): 5529−5539.
    [17]
    Karvonen J A. Baltic sea ice SAR segmentation and classification using modified pulse-coupled neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7): 1566−1574. doi: 10.1109/TGRS.2004.828179
    [18]
    Wang Chao, Zhang Hong, Wang Yuanyuan, et al. Sea ice classification with convolutional neural networks using sentinel-L ScanSAR images[C]//IGARSS 2018−2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain: IEEE, 2018: 7125−7128.
    [19]
    Li Xiaofeng, Liu Bin, Zheng Gang, et al. Deep-learning-based information mining from ocean remote-sensing imagery[J]. National Science Review, 2020, 7(10): 1584−1605. doi: 10.1093/nsr/nwaa047
    [20]
    LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436−444. doi: 10.1038/nature14539
    [21]
    Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY, United States: Curran Associates Inc., 2012: 1097−1105.
    [22]
    Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]. San Diego, CA: International Conference on Learning Representations, 2015.
    [23]
    He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 770−778.
    [24]
    Ren Yibin, Chen Huanfa, Han Yong, et al. A hybrid integrated deep learning model for the prediction of citywide spatio-temporal flow volumes[J]. International Journal of Geographical Information Science, 2020, 34(4): 802−823. doi: 10.1080/13658816.2019.1652303
    [25]
    Zhang Xudong, Li Xiaofeng. Combination of satellite observations and machine learning method for internal wave forecast in the Sulu and Celebes seas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020: 1−11.
    [26]
    Zheng Gang, Li Xiaofeng, Zhang Ronghua, et al. Purely satellite data–driven deep learning forecast of complicated tropical instability waves[J]. Science Advances, 2020, 6(29): eaba1482. doi: 10.1126/sciadv.aba1482
    [27]
    Li Jinxin, Wang Chao, Wang Shigang, et al. Gaofen-3 sea ice detection based on deep learning[C]//2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL). Singapore, Singapore: IEEE, 2017: 933−939.
    [28]
    Xu Yan, Scott K A. Sea ice and open water classification of SAR imagery using CNN-based transfer learning[C]//2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Fort Worth, TX, USA: IEEE, 2017: 3262−3265.
    [29]
    黄冬梅, 李明慧, 宋巍, 等. 卷积神经网络和深度置信网络在SAR影像冰水分类的性能评估[J]. 中国图象图形学报, 2018, 23(11): 1720−1732.

    Huang Dongmei, Li Minghui, Song Wei, et al. Performance of convolutional neural network and deep belief network in sea ice-water classification using SAR imagery[J]. Journal of Image and Graphics, 2018, 23(11): 1720−1732.
    [30]
    Dierking W. Mapping of different sea ice regimes using images from Sentinel-1 and ALOS Synthetic Aperture Radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 48(3): 1045−1058.
    [31]
    Geldsetzer T, Yackel J J. Sea ice type and open water discrimination using dual co-polarized C-band SAR[J]. Canadian Journal of Remote Sensing, 2009, 35(1): 73−84. doi: 10.5589/m08-075
    [32]
    Fabijańska A. Segmentation of corneal endothelium images using a U-Net-based convolutional neural network[J]. Artificial Intelligence in Medicine, 2018, 88: 1−13. doi: 10.1016/j.artmed.2018.04.004
    [33]
    Lian Sheng, Luo Zhiming, Zhong Zhun, et al. Attention guided U-Net for accurate iris segmentation[J]. Journal of Visual Communication and Image Representation, 2018, 56: 296−304. doi: 10.1016/j.jvcir.2018.10.001
    [34]
    Liu Bin, Li Xiaofeng, Zheng Gang. Coastal inundation mapping from bitemporal and dual-polarization SAR imagery based on deep convolutional neural networks[J]. Journal of Geophysical Research: Oceans, 2019, 124(12): 9101−9113. doi: 10.1029/2019JC015577
    [35]
    Shen Dongliang, Liu Bin, Li Xiaofeng. Sea surface wind retrieval from synthetic aperture radar data by deep convolutional neural networks[C]//IGARSS 2019−2019 IEEE International Geoscience and Remote Sensing Symposium. Japan, Yokohama, IEEE, 2019: 8035−8038.
    [36]
    Foumelis M. ESA sentinel-1 toolbox generation of SAR backscattering mosaics[DB/OL].[2020-06-28]. http://step.esa.int/main/doc/tutorials/. 2015.
    [37]
    Russell B C, Torralba A, Murphy K P, et al. LabelMe: a database and web-based tool for image annotation[J]. International Journal of Computer Vision, 2008, 77(1/3): 157−173.
    [38]
    Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany: Springer, 2015: 234−241.
    [39]
    Deepan P, Sudha L R. Object classification of remote sensing image using deep convolutional neural network[M]//Peter D, Alavi A H, Javadi B, et al. The Cognitive Approach in Cloud Computing and Internet of Things Technologies for Surveillance Tracking Systems. London: Academic Press, 2020: 107−120.
    [40]
    Wang Mingchang, Zhang Xinyue, Niu Xuefeng, et al. Scene classification of high-resolution remotely sensed image based on ResNet[J]. Journal of Geovisualization and Spatial Analysis, 2019, 3(2): 16. doi: 10.1007/s41651-019-0039-9
    [41]
    Gao Ligang, Chen Paiyu, Yu Shimeng. Demonstration of convolution kernel operation on resistive cross-point array[J]. IEEE Electron Device Letters, 2016, 37(7): 870−873. doi: 10.1109/LED.2016.2573140
    [42]
    袁非牛, 章琳, 史劲亭, 等. 自编码神经网络理论及应用综述[J]. 计算机学报, 2019, 42(1): 203−230.

    Yuan Feiniu, Zhang Lin, Shi Jinting, et al. Theories and applications of auto-encoder neural networks: a literature survey[J]. Chinese Journal of Computers, 2019, 42(1): 203−230.
    [43]
    Kingma D, Ba J. Adam: A method for stochastic optimization[C]. San Diego, CA: International Conference on Learning Representations, 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article views (854) PDF downloads(110) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return