留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气候变化对东北大西洋渔获物组成、多样性和营养级的影响

陈爽 陈新军

陈爽,陈新军. 气候变化对东北大西洋渔获物组成、多样性和营养级的影响[J]. 海洋学报,2020,42(10):100–109 doi: 10.3969/j.issn.0253-4193.2020.10.010
引用本文: 陈爽,陈新军. 气候变化对东北大西洋渔获物组成、多样性和营养级的影响[J]. 海洋学报,2020,42(10):100–109 doi: 10.3969/j.issn.0253-4193.2020.10.010
Chen Shuang,Chen Xinjun. Effects of climate change on catch composition, diversity of catch and mean trophic level in the Northeast Atlantic Ocean[J]. Haiyang Xuebao,2020, 42(10):100–109 doi: 10.3969/j.issn.0253-4193.2020.10.010
Citation: Chen Shuang,Chen Xinjun. Effects of climate change on catch composition, diversity of catch and mean trophic level in the Northeast Atlantic Ocean[J]. Haiyang Xuebao,2020, 42(10):100–109 doi: 10.3969/j.issn.0253-4193.2020.10.010

气候变化对东北大西洋渔获物组成、多样性和营养级的影响

doi: 10.3969/j.issn.0253-4193.2020.10.010
基金项目: 国家自然科学基金项目(NSFC41876141);海洋二号卫星地面应用系统项目(HY2A-HT-YWY-006)。
详细信息
    作者简介:

    陈爽(1993-),男,江苏省南通市人,主要从事渔业资源研究。 E-mail:1076482889@qq.com

    通讯作者:

    陈新军(1967-),教授,研究方向为渔业资源。 E-mail:xjchen@shou.edu.cn

  • 中图分类号: P714+.5;S932.4

Effects of climate change on catch composition, diversity of catch and mean trophic level in the Northeast Atlantic Ocean

  • 摘要: 东北大西洋是世界上重要的捕捞海域,气候变化对该海域捕捞产生了重要的影响。本文基于联合国粮农组织所提供的1982−2016年东北大西洋渔获产量数据,对该海域渔获物组成、多样性、平均营养级及主成分变化特征进行时间序列上的分析,并结合东北大西洋海域气候、环境因子,应用广义可加模型探究渔获物组成与气候变化之间的关系。结果显示:渔获物多样性的变化总体上呈下降趋势,2002−2010年间处于较低水平;平均营养级在2002年之前呈平缓下降的趋势,2002年之后开始波动上升,相关性分析表明这两个指标与海域环境因子的变化较为相关。对渔获物组成进行主成分分析显示,第一主成份变化的方差解释率达到35.3%,且与海域气候、环境因素有较高的相关性,第一主成分变化能够较好地表征气候影响下渔获物组成变化的情况。广义可加模型分析结果显示,渔获物组成变化的影响因素按解释率由高到低分别为:海表温度、海平面高度、盐度、海冰和北大西洋涛动指数。该研究有助于认识气候变化对海洋渔业资源及其结构组成的影响。
  • 图  1  1982−2016年多样性指数和平均营养级变化

    Fig.  1  The variations of diversity index and mean trophic level during 1982 to 2016

    图  2  1982−2016年渔获物组成主成分得分年际变化

    Fig.  2  The variations of the principal component scores for the catch composition during 1982 to 2016

    图  3  1982−2016年东北大西洋气候、环境因素主成分得分年际变化

    Fig.  3  The variations of the principal component scores for the climatic and environmental factors during 1982 to 2016

    图  4  气候、环境因素对渔获物组成PC1的影响

    Fig.  4  Effects of climatic and environmental factors on the first principal component scores of catch composition (PC1)

    表  1  渔获物组成第1和第2主成分载荷值

    Tab.  1  Loadings on the first and second principal components from the analysis of catch composition

    种类拉丁学名主成分载荷值
    PC1PC2
    大西洋鲱Clupea harengus−0.733−0.223
    大西洋鳕Gadus morhua0.2360.811
    毛鳞鱼Mallotus villosus0.671−0.123
    蓝鳕Micromesistius poutassou−0.537−0.422
    大西洋鲭Scomber scombrus−0.5080.757
    玉筋鱼属Ammodytes spp0.713−0.192
    绿青鳕Pollachius virens0.0850.121
    黍鲱Sprattus sprattus−0.816−0.370
    黑线鳕Melanogrammus aeglefinus−0.3660.484
    挪威长臀鳕Trisopterus esmarkii0.9030.144
    竹䇲鱼Trachurus trachurus0.315−0.110
    平鲉属Sebastes spp0.932−0.034
    沙丁鱼Sardina pilchardus0.812−0.138
    欧洲鲽Pleuronectes platessa0.7640.521
    牙鳕Merlangius merlangus0.9130.181
    欧洲无须鳕Merluccius merluccius−0.1730.943
    竹䇲鱼属Trachurus spp0.173−0.164
    魣鳕Molva molva0.6340.583
    格陵兰大比目鱼Reinhardtius hippoglossoides0.3160.624
    欧洲鳀Engraulis encrasicolus−0.2250.242
    长鳍金枪鱼Thunnus alalunga0.6070.188
    单鳍鳕Brosme brosme0.7590.333
    Solea solea0.4250.020
    鳐科Rajidae0.703−0.593
    北极鳕Boreogadus saida0.086−0.433
    白斑角鲨Squalus acanthias0.9760.066
    鮟鱇属Lophius spp0.0840.627
    尖吻平鲉Sebastes mentella−0.842−0.066
    金平鲉Sebastes marinus−0.8810.099
    鮟鱇Lophius piscatorius−0.6980.063
    大西洋狼鱼Anarhichas lupus0.054−0.133
    水珍鱼属Argentina spp−0.7490.102
    圆鲭Scomber colias−0.6570.666
    条长臀鳕Trisopterus luscus0.6900.093
    下载: 导出CSV

    表  2  气候、环境因素第1和第2主成分载荷值

    Tab.  2  Loadings on the first and second principal components from the analysis of the climatic and environmental factors

    因素主成分载荷值
    PC ⅠPC Ⅱ
    温度0.9350.284
    盐度0.6100.632
    海面高度0.820−0.086
    海冰−0.660−0.437
    北大西洋涛动指数−0.5800.744
    大西洋年代际涛动指数0.863−0.183
    北极涛动指数−0.3350.833
    下载: 导出CSV

    表  3  气候、环境因素主成分变化与各类渔获物组成指数相关性系数

    Tab.  3  The correlation coefficients of climatic and environmental factors principal component scores and different kinds of catch composition indexes

    多样性指数平均营养级PC1PC2
    PCI−0.609**0.623**−0.783**0.396
    PCII0.370−0.2250.382*0.148
      注:*表示p<0.05下相关性显著,**表示p<0.01下相关性极显著。
    下载: 导出CSV

    表  4  渔获物组成PC1与各气候、环境因素的GAM模型拟合

    Tab.  4  GAM models fitted to the first principal component scores of catch composition (PC1) and climatic and environmental factors

    模型因子P值F值累计解释偏差/%可解释偏差/%AIC值
    +水温2.12×10−26.0574.874.859.53
    +盐度1.46×10−49.2781.26.459.48
    +海面高度7.10×10−522.0889.28.042.65
    +海冰1.73×10−419.1592.33.124.20
    +北大西洋涛动3.82×10−11.1494.32.016.84
    +大西洋年代际涛动6.83×10−10.1794.40.118.82
    +北极涛动4.44×10−10.6094.60.219.31
    下载: 导出CSV
  • [1] Brander K M. Global fish production and climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(50): 19709−19714.
    [2] Pörtner H O, Knust R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance[J]. Science, 2007, 315(5808): 95−97.
    [3] Cheung W W L, Lam V W Y, Sarmiento J L, et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change[J]. Global Change Biology, 2010, 16(1): 24−35.
    [4] Beaugrand G. Marine Biodiversity, Climatic Variability and Global Change[M]. New York: Routledge, 2014: 486.
    [5] Pauly D, Watson R. Background and interpretation of the ‘Marine Trophic Index’ as a measure of biodiversity[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360(1454): 415−423.
    [6] 余为, 陈新军, 易倩. 不同气候模态下西北太平洋柔鱼渔场环境特征分析[J]. 水产学报, 2017, 41(4): 525−534.

    Yu Wei, Chen Xinjun, Yi Qian. Analysis of variations in the environmental conditions on the fishing ground of neon flying squid (Ommastrephes bartramii) in the Northwestern Pacific Ocean under different climate modes[J]. Journal of Fisheries of China, 2017, 41(4): 525−534.
    [7] 汪金涛, 陈新军. 中西太平洋鲣鱼渔场的重心变化及其预测模型建立[J]. 中国海洋大学学报, 2013, 43(8): 44−48.

    Wang Jingtao, Chen Xinjun. Changes and prediction of the fishing ground gravity of skipjack (Katsuwonus pelamis) in western-central Pacific[J]. Periodical of Ocean University of China, 2013, 43(8): 44−48.
    [8] IPCC, 2014. Climate Change 2014: Impact, Adaptation, and Vulnerability[R]. Cambridge: Cambridge University Press, 2014.
    [9] Sirabella P, Giuliani A, Colosimo A, et al. Breaking down the climate effects on cod recruitment by principal component analysis and canonical correlation[J]. Marine Ecology Progress Series, 2001, 216: 213−222.
    [10] Drinkwater K F. The response of Atlantic cod (Gadus morhua) to future climate change[J]. ICES Journal of Marine Science, 2005, 62(7): 1327−1337.
    [11] Perry A L, Low P J, Ellis J R, et al. Climate change and distribution shifts in marine fishes[J]. Science, 2005, 308(5730): 1912−1915.
    [12] Rose G A. Capelin (Mallotus villosus) distribution and climate: a sea “canary” for marine ecosystem change[J]. ICES Journal of Marine Science, 2005, 62(7): 1524−1530.
    [13] Fossheim M, Johannesen E, Primicerio R, et al. Spatial variation and structural change of the Barents Sea fish community[R]. Torsharn, Faroe Island: International Council for the Exploration of the Sea, 2009, E: 21.
    [14] Stenevik E K, Sundby S. Impacts of climate change on commercial fish stocks in Norwegian waters[J]. Marine Policy, 2007, 31(1): 19−31.
    [15] Simpson E H. Measurement of diversity[J]. Nature, 1949, 163(4148): 688.
    [16] Pauly D, Christensen V, Guénette S, et al. Towards sustainability in world fisheries[J]. Nature, 2002, 418(6898): 689−695.
    [17] Pauly D, Palomares M L, Froese R, et al. Fishing down Canadian aquatic food webs[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58(1): 51−62.
    [18] Tian Y J, Kidokoro H, Watanabe T. Long-term changes in the fish community structure from the Tsushima warm current region of the Japan/East Sea with an emphasis on the impacts of fishing and climate regime shift over the last four decades[J]. Progress in Oceanography, 2006, 68(2/4): 217−237.
    [19] Caddy J F, Garibaldi L. Apparent changes in the trophic composition of world marine harvests: the perspective from the FAO capture database[J]. Ocean & Coastal Management, 2000, 43(8/9): 615−655.
    [20] Pauly D, Christensen V V, Dalsgaard J, et al. Fishing down marine food webs[J]. Science, 1998, 279(5352): 860−863.
    [21] United Nations Food and Agricuture Organization. The State of World Fisheries and Aquaculture[R]. Rome: FAO, 2000.
    [22] Simmonds E J. Comparison of two periods of North Sea herring stock management: success, failure, and monetary value[J]. ICES Journal of Marine Science, 2007, 64(4): 686−692.
    [23] Horwood J, O'Brien C, Darby C. North Sea cod recovery?[J]. ICES Journal of Marine Science, 2006, 63(6): 961−968.
    [24] 焦敏, 高郭平, 陈新军. 东北大西洋海洋捕捞渔获物营养级变化研究[J]. 海洋学报, 2016, 38(2): 48−63.

    Jiao Min, Gao Guoping, Chen Xinjun. Changes in trophic level of marine catches in the northeast Atlantic[J]. Haiyang Xuebao, 2016, 38(2): 48−63.
    [25] 林楠, 苗振清, 卢占晖. 东海中部夏季鱼类群落结构及其多样性分析[J]. 广东海洋大学学报, 2009, 29(3): 42−47. doi: 10.3969/j.issn.1673-9159.2009.03.009

    Lin Nan, Miao Zhenqing, Lu Zhanhui. Structure and diversity of fish communities in summer in the middle of the East China Sea[J]. Journal of Guangdong Ocean University, 2009, 29(3): 42−47. doi: 10.3969/j.issn.1673-9159.2009.03.009
    [26] 宋普庆, 张静, 林龙山, 等. 台湾海峡游泳动物种类组成及其多样性[J]. 生物多样性, 2012, 20(1): 32−40.

    Song Puqing, Zhang Jing, Lin Longshan, et al. Nekton species composition and biodiversity in Taiwan Strait[J]. Biodiversity Science, 2012, 20(1): 32−40.
    [27] 刘尊雷, 袁兴伟, 杨林林, 等. 气候变化对东海北部外海越冬场渔业群落格局的影响[J]. 应用生态学报, 2015, 26(3): 901−911.

    Liu Zunlei, Yuan Xingwei, Yang Linlin, et al. Effect of climate change on the fisheries community pattern in the overwintering ground of open waters of northern East China Sea[J]. Chinese Journal of Applied Ecology, 2015, 26(3): 901−911.
    [28] 李励年, 林龙山, 缪圣赐. 一场由气候变化引发的渔业资源争夺战—欧洲“鲭鱼战争”持续升温[J]. 渔业信息与战略, 2013, 28(1): 75−80. doi: 10.3969/j.issn.1004-8340.2013.01.013

    Li Linian, Lin Longshan, Miao Shengci. The dispute on fishery resources caused by climate change—mackerel war intensified in Europe[J]. Fishery Information & Strategy, 2013, 28(1): 75−80. doi: 10.3969/j.issn.1004-8340.2013.01.013
    [29] Pörtner H O. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2002, 132(4): 739−761.
    [30] Pörtner H O. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals[J]. Naturwissenschaften, 2001, 88(4): 137−146.
    [31] Hutchings J A, Myers R A. What can be learned from the collapse of a renewable resource? Atlantic Cod, Gadus morhua, of newfoundland and Labrador[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1994, 51(9): 2126−2146.
    [32] Pepin P, Orr D C, Anderson J T. Time to hatch and larval size in relation to temperature and egg size in Atlantic cod (Gadus morhua)[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54(S1): 2−10.
    [33] Drinkwater K F, Beaugrand G, Kaeriyama M, et al. On the processes linking climate to ecosystem changes[J]. Journal of Marine Systems, 2010, 79(3/4): 374−388.
    [34] Tian Y J, Kidokoro H, Fujino T. Interannual-decadal variability of demersal fish assemblages in the Tsushima Warm Current region of the Japan Sea: impacts of climate regime shifts and trawl fisheries with implications for ecosystem-based management[J]. Fisheries Research, 2011, 112(3): 140−153.
    [35] Overland J E, Spillane M C, Soreide N N. Integrated analysis of physical and biological pan-Arctic change[J]. Climatic Change, 2004, 63(3): 291−322.
    [36] Chavez F P, Ryan J, Lluch-Cota S E, et al. From anchovies to sardines and back: multidecadal change in the Pacific Ocean[J]. Science, 2003, 299(5604): 217−221.
    [37] Brunel T, Boucher J. Long-term trends in fish recruitment in the north-east Atlantic related to climate change[J]. Fisheries Oceanography, 2010, 16(4): 336−349.
    [38] Reid P C, Borges M D F, Svendsen E. A regime shift in the North Sea circa 1988 linked to changes in the North Sea horse mackerel fishery[J]. Fisheries Research, 2001, 50(1/2): 163−171.
    [39] Ottersen G, Stenseth N C. Atlantic climate governs oceanographic and ecological variability in the Barents Sea[J]. Limnology and Oceanography, 2001, 46(7): 1774−1780.
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  20
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-20
  • 修回日期:  2019-01-02
  • 网络出版日期:  2020-11-13
  • 刊出日期:  2020-10-25

目录

    /

    返回文章
    返回