High-resolution distribution of n-alkanes and source apportionment of organic carbon in surface sediments of the Changjiang River Estuary
-
摘要: 于2014年3月对长江口及邻近海域的表层沉积物进行了高分辨率采样,分析了沉积物粒级组成、比表面积、总有机碳含量及其稳定碳同位素组成(δ13C)、正构烷烃及其相关分子指标,讨论了此区域沉积有机碳和正构烷烃的高分辨分布特征,并结合基于主成分分析−蒙特卡洛模拟的三端元混合模型,对沉积有机碳的来源进行了定量解析。结果表明,长江口及其邻近海域表层沉积物中总有机碳含量为0.45%±0.16%,近岸泥质区总有机碳含量较高,外海砂质区含量较低。总正构烷烃(C14−C35)的绝对含量和相对于总有机碳的含量分别为(1.42±0.73) μg/g和(0.34±0.21) mg/g。泥质区以长链正构烷烃占优势,具有较强的奇碳优势;砂质区以短链正构烷烃占优势,且具有一定的偶碳优势。长江输入、老黄河口输入、闽浙沿岸小型河流输入和水动力分选等因素制约了正构烷烃的输运和分布特征。模型结果显示此区域沉积有机碳来自海源、土壤和高等植物的混合输入,其中以海源为主,其贡献为42.70%±18.18%,由陆地向外海贡献逐渐升高,其次是土壤和高等植物,其贡献分别为28.99%±15.37%和28.31%±17.12%。在水动力分选作用的影响下,两种陆源有机碳在入海之后的输运过程中存在明显的分异,土壤有机碳主要与细颗粒物结合,并沿闽浙沿岸向南输运,而高等植物来源有机碳则在长江口存在东北方向的输运。Abstract: Surface sediments were collected by high-resolution sampling from the Changjiang River Estuary and its adjacent shelf in March, 2014. Grain size composition, Specific Surface Area (SSA), Total Organic Carbon (TOC) and stable carbon isotope composition (δ13C), n-alkanes and its related indices in sediments were analyzed to discuss the high-resolution distribution patterns of sedimentary organic carbon (OC) and n-alkanes in this region. A three end-members mixing model based on Principal Component Analysis (PCA) and Monte-Carlo Simulation was constructed to characterize the sources of sedimentary OC quantitatively. The results showed that TOC contents were 0.45%±0.16%, which were relatively higher in coastal mud area than offshore sandy area. Absolute contents (Σn−Alk) and relative contents (Σn−Alk/TOC) of total n-alkanes (C14 to C35) were (1.42±0.73) μg/g and (0.34±0.21) mg/g , respectively. There was a strong odd to even carbon preference of long-chain n-alkanes in muddy sediments, while there was an even to odd carbon preference of short-chain n-alkanes in sandy area. Inputs from the Changjiang River, the Old Yellow River Estuary and small rivers in the Zhe-Min coasts and hydrodynamic sorting restricted the transport and dispersal patterns of n-alkanes. The results of the three end-members mixing model indicated a mixture input of marine, soil and higher plant derived OC in this region. Among them, sedimentary OC was dominated by marine source (42.70%±18.18%), increasing from coast to outer sea gradually. Contributions of soil OC and higher plant OC were 28.99%±15.37% and 28.31%±17.12%, respectively. Influenced by hydrodynamic forces, obvious differentiation of these two terrestrial OC pools occurred during transport after entering into ocean. Soil OC was mainly associated with fine grains, and was transported southward along the Zhe-Min coast, while higher plant derived OC was mainly transported along northeast direction in the Changjiang River Estuary.
-
图 6 2014年3月长江口表层沉积物海源贡献率(a)、土壤贡献率(b)、高等植物贡献率(c)、海源有机碳含量(d)、土壤来源有机碳含量(e)和高等植物来源有机碳含量(f)的空间分布
Fig. 6 Spatial distribution of relative proportions of marine (a), soil (b), vascular plant (c) and contents of marine (d), soil (e), vascular plant (f) derived organic carbon in surface sediments from the Changjiang River Estuary in March, 2014
图 7 2014年3月长江口表层沉积物TOC随MGS(a)和SSA(b)的变化、总正构烷烃随MGS(c)和SSA(d)的变化及正构烷烃单体随MGS(e)和SSA(f)变化的相关系数
Fig. 7 Plots of TOC versus MGS (a) and SSA (b), Σn−Alk versus MGS (c) and SSA (d), as well as correlation coefficients of individual n-alkanes with MGS (e) and SSA (f) for surface sediments from the Changjiang River Estuary in March, 2014
表 1 长江口2014年3月表层沉积物正构烷烃及其分子指标
Tab. 1 n-alkanes and its proxies in surface sediments from the Changjiang River Estuary in March, 2014
区域 Σn−Alk/μg·g−1 TAR ACL CPI 1/Pmar-aq 参考文献 长江口及邻近海域 0.19~3.75# 0.22~19.99 18.33~29.02 0.42~4.68* 1.76~12.04 本研究 长江口及邻近海域 0.44~4.31# 0.90~20.50 22.89~29.10 2.59~6.15* 4.48~24.94 Hu等[10] 黄河口及其邻近海域 0.18~1.42## − − 1.80~6.18** − Sun等[39] 黄海 1.00~4.70# 1.10~14.00 18.30~27.00 1.30~6.10* − Hu等[40] Ashtamudi河口 0.42~6.6### 1.20~12.20 − 1.10~3.90* 2.5~10 Ankit等[21] Vaza Barris河口 0.19~8.50−− 0~27.29 − 1.05~5.25* − Barbosa等[41] 注:#碳数14~35; ##碳数12~33; ###碳数15~35; −−碳数未知; *碳数25~33; **碳数23~31。 -
[1] Hedges J I. Global biogeochemical cycles: progress and problems[J]. Marine Chemistry, 1992, 39(1/3): 67−93. [2] McKee B A, Aller R C, Allison M A, et al. Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: benthic boundary layer and seabed processes[J]. Continental Shelf Research, 2004, 24(7/8): 899−926. [3] Bauer J E, Cai Weijun, Raymond P A, et al. The changing carbon cycle of the coastal ocean[J]. Nature, 2013, 504(7478): 61−70. doi: 10.1038/nature12857 [4] Bianchi T S, Cui Xingqian, Blair N E, et al. Centers of organic carbon burial and oxidation at the land-ocean interface[J]. Organic Geochemistry, 2018, 115: 138−155. doi: 10.1016/j.orggeochem.2017.09.008 [5] Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology, 2007, 85(3/4): 208−224. [6] Wang Zhanghua, Li Luqian, Chen Dechao, et al. Plume front and suspended sediment dispersal off the Yangtze (Changjiang) River mouth, China during non-flood season[J]. Estuarine, Coastal and Shelf Science, 2007, 71(1/2): 60−67. [7] Rong Zengrui, Li Ming. Tidal effects on the bulge region of Changjiang River plume[J]. Estuarine, Coastal and Shelf Science, 2012, 97: 149−160. doi: 10.1016/j.ecss.2011.11.035 [8] Deng B, Zhang J, Wu Y. Recent sediment accumulation and carbon burial in the East China Sea[J]. Global Biogeochemical Cycles, 2006, 20(3): GB3014. [9] Xing Lei, Zhang Hailong, Yuan Zineng, et al. Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf[J]. Continental Shelf Research, 2011, 31(10): 1106−1115. doi: 10.1016/j.csr.2011.04.003 [10] Hu Limin, Shi Xuefa, Yu Zhigang, et al. Distribution of sedimentary organic matter in estuarine-inner shelf regions of the East China Sea: implications for hydrodynamic forces and anthropogenic impact[J]. Marine Chemistry, 2012, 142−144: 29−40. doi: 10.1016/j.marchem.2012.08.004 [11] Yao Peng, Yu Zhigang, Bianchi T S, et al. A multiproxy analysis of sedimentary organic carbon in the Changjiang Estuary and adjacent shelf[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(7): 1407−1429. doi: 10.1002/2014JG002831 [12] Zhao B, Yao Peng, Bianchi T S, et al. Early diagenesis and authigenic mineral formation in mobile muds of the Changjiang Estuary and adjacent shelf[J]. Journal of Marine Systems, 2017, 172: 64−74. doi: 10.1016/j.jmarsys.2017.03.001 [13] Zhao Bin, Yao Peng, Bianchi T S, et al. The remineralization of sedimentary organic carbon in different sedimentary regimes of the Yellow and East China Seas[J]. Chemical Geology, 2018, 495: 104−117. doi: 10.1016/j.chemgeo.2018.08.012 [14] Bao Rui, van der Voort T S, Zhao Meixun, et al. Influence of hydrodynamic processes on the fate of sedimentary organic matter on continental margins[J]. Global Biogeochemical Cycles, 2018, 32(9): 1420−1432. doi: 10.1029/2018GB005921 [15] Bao Rui, Blattmann T M, McIntyre C, et al. Relationships between grain size and organic carbon 14C heterogeneity in continental margin sediments[J]. Earth and Planetary Science Letters, 2019, 505: 76−85. doi: 10.1016/j.jpgl.2018.10.013 [16] Eglinton G, Hamilton R J. Leaf epicuticular waxes[J]. Science, 1967, 156(3780): 1322−1335. doi: 10.1126/science.156.3780.1322 [17] Sakata S, Hayes J M, McTaggart A R, et al. Carbon isotopic fractionation associated with lipid biosynthesis by a cyanobacterium: relevance for interpretation of biomarker records[J]. Geochimica et Cosmochimica Acta, 1997, 61(24): 5379−5389. doi: 10.1016/S0016-7037(97)00314-1 [18] Mead R, Xu Yuping, Chong J D, et al. Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes[J]. Organic Geochemistry, 2005, 36(3): 363−370. doi: 10.1016/j.orggeochem.2004.10.003 [19] Guo Zhigang, Lin Tian, Zhang Gan, et al. Occurrence and sources of polycyclic aromatic hydrocarbons and n-alkanes in PM2.5 in the roadside environment of a major city in China[J]. Journal of Hazardous Materials, 2009, 170(2/3): 888−894. [20] Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes[J]. Organic Geochemistry, 1997, 27(5/6): 213−250. [21] Ankit Y, Mishra P K, Kumar P, et al. Molecular distribution and carbon isotope of n-alkanes from Ashtamudi Estuary, South India: Assessment of organic matter sources and paleoclimatic implications[J]. Marine Chemistry, 2017, 196: 62−70. doi: 10.1016/j.marchem.2017.08.002 [22] Andersson A. A systematic examination of a random sampling strategy for source apportionment calculations[J]. Science of the Total Environment, 2011, 412-413: 232−238. doi: 10.1016/j.scitotenv.2011.10.031 [23] Suess E. Interaction of organic compounds with calcium carbonate-II. Organo-carbonate association in recent sediments[J]. Geochimica et Cosmochimica Acta, 1973, 37(11): 2435−2447. doi: 10.1016/0016-7037(73)90290-1 [24] Mayer L M. Surface area control of organic carbon accumulation in continental shelf sediments[J]. Geochimica et Cosmochimica Acta, 1994, 58(4): 1271−1284. doi: 10.1016/0016-7037(94)90381-6 [25] Mayer L M. Relationships between mineral surfaces and organic carbon concentrations in soils and sediments[J]. Chemical Geology, 1994, 114(3/4): 347−363. [26] Keil R G, Mayer L M. Mineral matrices and organic matter[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier Ltd., 2014, 76: 337-359. [27] 曾秀琳, 李敏, 居学海. 柴油中烷烃热分解性能的理论研究[J]. 计算机与应用化学, 2012, 29(6): 661−664. doi: 10.3969/j.issn.1001-4160.2012.06.006Zeng Xiulin, Li Min, Ju Xuehai. Theoretical study on the pyrolysis characteristics of alkanes in diesel oil[J]. Computers and Applied Chemistry, 2012, 29(6): 661−664. doi: 10.3969/j.issn.1001-4160.2012.06.006 [28] Li Dong, Yao Peng, Bianchi T S, et al. Organic carbon cycling in sediments of the Changjiang Estuary and adjacent shelf: Implication for the influence of Three Gorges Dam[J]. Journal of Marine Systems, 2014, 139: 409−419. doi: 10.1016/j.jmarsys.2014.08.009 [29] Gao Jianhua, Shi Yong, Sheng Hui, et al. Rapid response of the Changjiang (Yangtze) River and East China Sea source-to-sink conveying system to human induced catchment perturbations[J]. Marine Geology, 2019, 414: 1−17. doi: 10.1016/j.margeo.2019.05.003 [30] 马倩倩, 魏星, 吴莹, 等. 三峡大坝建成后长江河流表层沉积物中有机物组成与分布特征[J]. 中国环境科学, 2015, 35(8): 2485−2493. doi: 10.3969/j.issn.1000-6923.2015.08.029Ma Qianqian, Wei Xing, Wu Ying, et al. Composition and distribution of organic matter in the surface sediments of the Changjiang River in Post-Three Gorges Dam period[J]. China Environmental Science, 2015, 35(8): 2485−2493. doi: 10.3969/j.issn.1000-6923.2015.08.029 [31] 朱纯, 潘建明, 卢冰, 等. 长江、老黄河口及东海陆架沉积有机质物源指标及有机碳的沉积环境[J]. 海洋学研究, 2005, 23(3): 36−46. doi: 10.3969/j.issn.1001-909X.2005.03.006Zhu Chun, Pan Jianming, Lu Bing, et al. Source indication and accumulative effect of sedimentary organic matter in the Changjiang Estuary, the old Huanghe River subaqueous delta and the East China Sea shelf[J]. Journal of Marine Sciences, 2005, 23(3): 36−46. doi: 10.3969/j.issn.1001-909X.2005.03.006 [32] Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research, 2006, 26(17/18): 2141−2156. [33] Wang Xiaohua, Qiao Fangli, Lu Jing, et al. The turbidity maxima of the northern Jiangsu shoal-water in the Yellow Sea, China[J]. Estuarine, Coastal and Shelf Science, 2011, 93(3): 202−211. doi: 10.1016/j.ecss.2010.10.020 [34] Hedges J I, Keil R G, Benner R. What happens to terrestrial organic matter in the ocean?[J]. Organic Geochemistry, 1997, 27(5/6): 195−212. [35] Redfield A C, Ketchum B H, Richards F A. The influence of organisms on the composition of the sea water[M]//Hill M N. New York: Interscience Publishers, 1963, 2: 26−77. [36] Goñi M A, Teixeira M J, Perkey D W. Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA)[J]. Estuarine, Coastal and Shelf Science, 2003, 57(5/6): 1023−1048. [37] 于灏, 吴莹, 张经, 等. 长江流域植物和土壤的木质素特征[J]. 环境科学学报, 2007, 27(5): 817−823. doi: 10.3321/j.issn:0253-2468.2007.05.019Yu Hao, Wu Ying, Zhang Jing, et al. The characteristics of lignin of plant and soil samples in the Yangtze River (Changjiang) Drainage Basin[J]. Acta Scientiae Circumstantiae, 2007, 27(5): 817−823. doi: 10.3321/j.issn:0253-2468.2007.05.019 [38] Villinski J C, Hayes K M, Brassell S C, et al. Sedimentary sterols as biogeochemical indicators in the Southern Ocean[J]. Organic Geochemistry, 2008, 39(5): 567−588. doi: 10.1016/j.orggeochem.2008.01.009 [39] Sun Dayang, Tang Jianhui, He Yuxin, et al. Sources, distributions, and burial efficiency of terrigenous organic matter in surface sediments from the Yellow River mouth, northeast China[J]. Organic Geochemistry, 2018, 118: 89−102. doi: 10.1016/j.orggeochem.2017.12.009 [40] Hu Limin, Shi Xuefa, Guo Zhigang, et al. Sources, dispersal and preservation of sedimentary organic matter in the Yellow Sea: the importance of depositional hydrodynamic forcing[J]. Marine Geology, 2013, 335: 52−63. doi: 10.1016/j.margeo.2012.10.008 [41] Barbosa J C S, Santos L G G V, Sant'Anna M V S, et al. Seasonal distribution of aliphatic hydrocarbons in the Vaza Barris estuarine system, Sergipe, Brazil[J]. Marine Pollution Bulletin, 2016, 104(1/2): 343−346. [42] Ficken K J, Li B, Swain D L, et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J]. Organic Geochemistry, 2000, 31(7/8): 745−749. [43] Sikes E L, Uhle M E, Nodder S D, et al. Sources of organic matter in a coastal marine environment: evidence from n-alkanes and their δ13C distributions in the Hauraki Gulf, New Zealand[J]. Marine Chemistry, 2009, 113(3/4): 149−163. [44] Volkman J K, Barrett S M, Blackburn S I, et al. Microalgal biomarkers: a review of recent research developments[J]. Organic Geochemistry, 1998, 29(5/7): 1163−1179. [45] Gelpi E, Schneider H, Mann J, et al. Hydrocarbons of geochemical significance in microscopic algae[J]. Phytochemistry, 1970, 9(3): 603−612. doi: 10.1016/S0031-9422(00)85700-3 [46] Bouloubassi I, Fillaux J, Saliot A. Hydrocarbons in surface sediments from the Changjiang (Yangtze River) Estuary, East China Sea[J]. Marine Pollution Bulletin, 2001, 42(12): 1335−1346. doi: 10.1016/S0025-326X(01)00149-7 [47] Nishimura M, Baker E W. Possible origin of n-alkanes with a remarkable even-to-odd predominance in recent marine sediments[J]. Geochimica et Cosmochimica Acta, 1986, 50(2): 299−305. doi: 10.1016/0016-7037(86)90178-X [48] Grimalt J, Albaigés J. Sources and occurrence of C12−C22 n-alkane distributions with even carbon-number preference in sedimentary environments[J]. Geochimica et Cosmochimica Acta, 1987, 51(6): 1379−1384. doi: 10.1016/0016-7037(87)90322-X [49] Harji R R, Yvenat A, Bhosle N B. Sources of hydrocarbons in sediments of the Mandovi Estuary and the Marmugoa Harbour, west coast of India[J]. Environment International, 2008, 34(7): 959−965. doi: 10.1016/j.envint.2008.02.006 [50] Guo Xiaoyi, Xu Bochao, Burnett W C, et al. A potential proxy for seasonal hypoxia: LA-ICP-MS Mn/Ca ratios in benthic foraminifera from the Yangtze River Estuary[J]. Geochimica et Cosmochimica Acta, 2019, 245: 290−303. doi: 10.1016/j.gca.2018.11.007 [51] Guo Zhigang, Yang Zuosheng, Fan Dejiang, et al. Seasonal variation of sedimentation in the Changjiang Estuary mud area[J]. Journal of Geographical Sciences, 2003, 13(3): 348−354. doi: 10.1007/BF02837510 [52] Wang Jinpeng, Yao Peng, Bianchi T S, et al. The effect of particle density on the sources, distribution, and degradation of sedimentary organic carbon in the Changjiang Estuary and adjacent shelf[J]. Chemical Geology, 2015, 402: 52‒67. [53] 潘慧慧, 姚鹏, 赵彬, 等. 基于水淘选分级的长江口最大浑浊带附近颗粒有机碳的来源、分布和保存[J]. 海洋学报, 2015, 37(4): 1−15.Pan Huihui, Yao Peng, Zhao Bin, et al. Sources, distribution and preservation of size-fractionated particulate organic carbon in the turbidity maximum zone of the Changjiang Estuary based on water elutriation[J]. Haiyang Xuebao, 2015, 37(4): 1−15. [54] 王金鹏, 姚鹏, 孟佳, 等. 基于水淘选分级的长江口及其邻近海域表层沉积物中有机碳的来源、分布和保存[J]. 海洋学报, 2015, 37(6): 41−57.Wang Jinpeng, Yao Peng, Meng Jia, et al. Sources, distribution, and preservation of size-fractionated sedimentary organic carbon of the Changjiang Estuary and adjacent shelf based on water elutriation[J]. Haiyang Xuebao, 2015, 37(6): 41−57. [55] 赵彬, 姚鹏, 潘慧慧, 等. 长江口表层沉积物中有机碳的来源、分布与成岩状态[J]. 中国海洋大学学报, 2015, 45(11): 49−62.Zhao Bin, Yao Peng, Pan Huihui, et al. Sources, distributions and disgenetic state of sedimentary organic carbon in the Changjiang Estuary[J]. Periodical of Ocean University of China, 2015, 45(11): 49−62. [56] 朱建荣, 丁平兴, 胡敦欣. 2000年8月长江口外海区冲淡水和羽状锋的观测[J]. 海洋与湖沼, 2003, 34(3): 249−255. doi: 10.3321/j.issn:0029-814X.2003.03.003Zhu Jianrong, Ding Pingxing, Hu Dunxin. Observation of the diluted water and plume front off the Changjiang River Estuary during August 2000[J]. Oceanologia et Limnologia Sinica, 2003, 34(3): 249−255. doi: 10.3321/j.issn:0029-814X.2003.03.003 [57] 徐方建, 李安春, 万世明, 等. 东海内陆架泥质区中全新世环境敏感粒度组分的地质意义[J]. 海洋学报, 2009, 31(3): 95−102.Xu Fangjian, Li Anchun, Wan Shiming, et al. The geological significance of environmental sensitive grain-size populations in the mud wedge of the East China Sea during the mid-Holocene[J]. Haiyang Xuebao, 2009, 31(3): 95−102. -