留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浒苔绿潮消亡腐败过程中的营养盐释放及其对近海环境的影响

冯立娜 张海波 孙雨嫣 李修竹 苏荣国 石晓勇

冯立娜,张海波,孙雨嫣,等. 浒苔绿潮消亡腐败过程中的营养盐释放及其对近海环境的影响[J]. 海洋学报,2020,42(8):59–68 doi: 10.3969/j.issn.0253-4193.2020.08.007
引用本文: 冯立娜,张海波,孙雨嫣,等. 浒苔绿潮消亡腐败过程中的营养盐释放及其对近海环境的影响[J]. 海洋学报,2020,42(8):59–68 doi: 10.3969/j.issn.0253-4193.2020.08.007
Feng Li'na,Zhang Haibo,Sun Yuyan, et al. On nutrient releases from the decomposition of Ulva prolifera green tide and their impacts on nearshore seawaters in the southern Yellow Sea[J]. Haiyang Xuebao,2020, 42(8):59–68 doi: 10.3969/j.issn.0253-4193.2020.08.007
Citation: Feng Li'na,Zhang Haibo,Sun Yuyan, et al. On nutrient releases from the decomposition of Ulva prolifera green tide and their impacts on nearshore seawaters in the southern Yellow Sea[J]. Haiyang Xuebao,2020, 42(8):59–68 doi: 10.3969/j.issn.0253-4193.2020.08.007

浒苔绿潮消亡腐败过程中的营养盐释放及其对近海环境的影响

doi: 10.3969/j.issn.0253-4193.2020.08.007
基金项目: 国家重点研发计划(2016YFC1402101);国家海洋局海洋减灾中心科研项目(2014AA060)。
详细信息
    作者简介:

    冯立娜(1995—),女,山东省泰安市人,主要研究方向为海洋污染生态化学。E-mail:linafeng330@163.com

    通讯作者:

    苏荣国,教授,主要从事海洋污染生态化学研究。E-mail:surongguo@ouc.edu.cn

  • 中图分类号: X55;Q178.53;P76

On nutrient releases from the decomposition of Ulva prolifera green tide and their impacts on nearshore seawaters in the southern Yellow Sea

  • 摘要: 为探讨浒苔绿潮消亡腐败过程中的营养盐释放规律以及浒苔绿潮聚积腐烂对海水水质的影响,在室外模拟近岸浒苔绿潮聚积腐烂过程,并于2018年6月在浒苔绿潮靠岸前开始对主要浒苔绿潮聚积地(鳌山湾、鳌山湾口的海参池、石老人海域)进行观测,实时记录浒苔腐烂状况及对周边环境的影响。模拟实验结果表明:各形态氮、磷营养盐在浒苔腐烂分解过程中升高明显,且以溶解有机态、颗粒态为主。其中生物量为5 g/L实验组溶解有机氮(Dissolved Organic Nitrogen,DON)、颗粒态氮(Particulate Nitrogen,PN)、溶解有机磷(Dissolved Organic Phosphorus,DOP)、颗粒态磷(Particulate Phosphorus,PP)的浓度在浒苔腐烂分解过程中达本底浓度的5~10倍以上。现场调查结果显示,随着浒苔绿潮在青岛近岸聚积,各调查站点的溶解无机氮(Dissolved Inorganic Nitrogen,DIN)、DON、DOP受浒苔绿潮吸收影响均降至最低值,后随着浒苔绿潮腐烂逐渐上升,水质恶化。其中鳌山湾受浒苔绿潮腐烂影响最为严重,在调查期间水体甚至劣于二类水质。PN、PP为调查区内营养盐的主要赋存形式,其中鳌山湾海域PP变化最为明显,随着浒苔绿潮聚积腐烂达到最高值(2.02 μmol/L)。相比于鳌山湾,石老人海域海水交换能力强且在浒苔绿潮靠岸后进行了及时拦截打捞,受浒苔绿潮消亡腐烂影响较小。浒苔绿潮靠岸聚积腐烂,使海域内营养盐含量与结构明显变化,影响海域浮游植物群落结构的稳定,可能引发赤潮等次生生态灾害。因此需要及时清理聚积在青岛近岸的浒苔,避免其腐烂对周边环境造成影响。
  • 图  1  青岛近岸调查站位

    Fig.  1  The survey stations in the Qingdao near-shore area

    图  2  浒苔腐烂过程中的状况

    Fig.  2  The status during the decay of Ulva prolifera

    图  3  实验组浒苔腐烂过程中水体DIN各组分浓度的变化

    Fig.  3  The variations of DIN components in water during the decay of Ulva prolifera (experimental group)

    图  4  实验组浒苔腐烂过程中水体各形态营养盐浓度的变化

    Fig.  4  The variations of nutrient concentrations in water during the decay of Ulva prolifera (experimental group)

    图  5  实验组浒苔腐烂过程中水体氮磷比值的变化

    Fig.  5  The variations of N/P ratios in water during the decay of Ulva prolifera (experimental group)

    图  6  青岛近岸6−8月浒苔绿潮状况

    Fig.  6  The status of Ulva prolifera green tide in the coastal water of Qingdao from June to August

    图  7  调查区域浒苔绿潮腐烂过程中水体DIN各组分浓度变化

    Fig.  7  The variations of DIN components in water during the decay of Ulva prolifera green tide (field investigation)

    图  8  调查区域浒苔绿潮腐烂过程中水体各形态营养盐浓度的变化

    Fig.  8  The variations of nutrient concentrations in water during the decay of Ulva prolifera green tide (field investigation)

    图  9  浒苔绿潮腐烂过程中水体氮磷比值的变化

    Fig.  9  The variations of N/P ratios in water during the decay of Ulva prolifera green tide

  • [1] Sellner K G, Doucette G J, Kirkpatrick G J. Harmful algal blooms: causes, impacts and detection[J]. Journal of Industrial Microbiology and Biotechnology, 2003, 30(7): 383−406. doi: 10.1007/s10295-003-0074-9
    [2] Anderson D M, Glibert P M, Burkholder J M. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences[J]. Estuaries, 2002, 25(4): 704−726. doi: 10.1007/BF02804901
    [3] Yabe T, Ishii Y, Amano Y, et al. Green tide formed by free-floating Ulva spp. at Yatsu tidal flat, Japan[J]. Limnology, 2009, 10(3): 239−245. doi: 10.1007/s10201-009-0278-4
    [4] Zhao Jin, Jiang Peng, Liu Zhengyi, et al. The yellow sea green tides were dominated by one species, Ulva (Enteromorpha) prolifera, from 2007 to 2011[J]. Chinese Science Bulletin, 2013, 58(19): 2298−2302. doi: 10.1007/s11434-012-5441-3
    [5] Liu Dongyan, Zhou Mingjiang. Green tides of the Yellow Sea: massive free-floating blooms of Ulva prolifera[M]//Glibert P M, Berdalet E, Burford M A, et al. Global Ecology and Oceanography of Harmful Algal Blooms. Cham: Springer, 2018, 232: 317−326.
    [6] Paumier A, Tatlian T, Réveillac E, et al. Impacts of green tides on estuarine fish assemblages[J]. Estuarine, Coastal and Shelf Science, 2018, 213: 176−184. doi: 10.1016/j.ecss.2018.08.021
    [7] Zhao Jin, Jiang Peng, Qiu Ri, et al. The Yellow Sea green tide: a risk of macroalgae invasion[J]. Harmful Algae, 2018, 77: 11−17. doi: 10.1016/j.hal.2018.05.007
    [8] Guo Cong, Li Fuchao, Jiang Peng, et al. Bacterial diversity in surface water of the Yellow Sea during and after a green alga tide in 2008[J]. Chinese Journal of Oceanology and Limnology, 2011, 29(6): 1147−1154. doi: 10.1007/s00343-011-0264-7
    [9] Fan Meihua, Sun Xue, Liao Zhi, et al. Comparative proteomic analysis of Ulva prolifera response to high temperature stress[J]. Proteome Science, 2018, 16: 17. doi: 10.1186/s12953-018-0145-5
    [10] 吴青. 浒苔漂浮与沉降机制研究[D]. 上海: 上海海洋大学, 2015.

    Wu Qing. Mechanism of floating and sinking for Ulva prolifera[D]. Shanghai: Shanghai Ocean University, 2015.
    [11] Rybak A S. Species of Ulva (Ulvophyceae, Chlorophyta) as indicators of salinity[J]. Ecological Indicators, 2018, 85: 253−261. doi: 10.1016/j.ecolind.2017.10.061
    [12] de Oliveira V P, Martins N T, de Souza Guedes P, et al. Bioremediation of nitrogenous compounds from oilfield wastewater by Ulva lactuca (Chlorophyta)[J]. Bioremediation Journal, 2016, 20(1): 1−9. doi: 10.1080/10889868.2015.1114463
    [13] Cohen R A, Fong P. Using opportunistic green macroalgae as indicators of nitrogen supply and sources to estuaries[J]. Ecological Applications, 2006, 16(4): 1405−1420. doi: 10.1890/1051-0761(2006)016[1405:UOGMAI]2.0.CO;2
    [14] Luo Minbo, Liu Feng, Xu Zhaoli. Growth and nutrient uptake capacity of two co-occurring species, Ulva prolifera and Ulva linza[J]. Aquatic Botany, 2012, 100: 18−24. doi: 10.1016/j.aquabot.2012.03.006
    [15] Fong P, Fong J J, Fong C R. Growth, nutrient storage, and release of dissolved organic nitrogen by Enteromorpha intestinalis in response to pulses of nitrogen and phosphorus[J]. Aquatic Botany, 2004, 78(1): 83−95. doi: 10.1016/j.aquabot.2003.09.006
    [16] Song S J, Ryu J, Khim J S, et al. Seasonal variability of community structure and breeding activity in marine phytal harpacticoid copepods on Ulva pertusa from Pohang, east coast of Korea[J]. Journal of Sea Research, 2010, 63(1): 1−10. doi: 10.1016/j.seares.2009.08.004
    [17] Liu Feng, Pang Shaojun, Xu Na, et al. Ulva diversity in the Yellow Sea during the large-scale green algal blooms in 2008−2009[J]. Phycological Research, 2010, 58(4): 270−279. doi: 10.1111/j.1440-1835.2010.00586.x
    [18] Gao Zhengquan, Xu Dong, Meng Chunxiao, et al. The green tide-forming macroalga Ulva linza outcompetes the red macroalga Gracilaria lemaneiformis via allelopathy and fast nutrients uptake[J]. Aquatic Ecology, 2014, 48(1): 53−62. doi: 10.1007/s10452-013-9465-9
    [19] Li Shaoxiang, Yu Kefeng, Huo Yuanzi, et al. Effects of nitrogen and phosphorus enrichment on growth and photosynthetic assimilation of carbon in a green tide-forming species (Ulva prolifera) in the Yellow Sea[J]. Hydrobiologia, 2016, 776(1): 161−171. doi: 10.1007/s10750-016-2749-z
    [20] Zhang Xiaowen, Wang Hongxia, Mao Yuze, et al. Somatic cells serve as a potential propagule bank of Enteromorpha prolifera forming a green tide in the Yellow Sea, China[J]. Journal of Applied Phycology, 2010, 22(2): 173−180. doi: 10.1007/s10811-009-9437-6
    [21] 冯国昌, 刘钢柱, 隋少峰. 腐烂浒苔清运现场职业卫生检测与评价[J]. 中国卫生工程学, 2011, 10(1): 45−46.

    Feng Guochang, Liu Gangzhu, Sui Shaofeng. Occupational detection and evaluation on workplaces of clearance and transport for rotten Enteromorpha prolifera[J]. Chinese Journal of Public Health Engineering, 2011, 10(1): 45−46.
    [22] Morand P, Briand X. Anaerobic digestion of Ulva sp. 2. Study of Ulva degradation and methanisation of liquefaction juices[J]. Journal of Applied Phycology, 1999, 11(2): 164−177. doi: 10.1023/A:1008028127701
    [23] Sand-Jensen K, Borum J. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries[J]. Aquatic Botany, 1991, 41(1/3): 137−175.
    [24] 潘慧云, 徐小花, 高士祥. 沉水植物衰亡过程中营养盐的释放过程及规律[J]. 环境科学研究, 2008, 21(1): 64−68.

    Pan Huiyun, Xu Xiaohua, Gao Shixiang. Study on process of nutrition release during the decay of submerged macrophytes[J]. Research of Environmental Sciences, 2008, 21(1): 64−68.
    [25] 叶春, 王博, 李春华, 等. 沉水植物黑藻腐解过程中营养盐释放过程[J]. 中国环境科学, 2014, 34(10): 2653−2659.

    Ye Chun, Wang Bo, Li Chunhua, et al. Nutrient release process during decomposition of submerged macrophytes (Hydrilla verticillata royle)[J]. China Environmental Science, 2014, 34(10): 2653−2659.
    [26] 丁月旻. 黄海浒苔绿潮中生源要素的迁移转化及对生态环境的影响[D]. 青岛: 中国科学院海洋研究所, 2014.

    Ding Yuemin. Impacts of Ulva (Enteromorpha) prolifera in the green tide on the Yellow Sea ecological environment—Implications from migration and transformation of biogenic elements[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2014.
    [27] Smith D W, Horne A J. Experimental measurement of resource competition between planktonic microalgae and macroalgae (seaweeds) in mesocosms simulating the San Francisco Bay-Estuary, California[J]. Hydrobiologia, 1988, 159(3): 259−268. doi: 10.1007/BF00008239
    [28] Wang Chao, Yu Rencheng, Zhou Mingjiang, et al. Effects of the decomposing green macroalga Ulva (Enteromorpha) prolifera on the growth of four red-tide species[J]. Harmful Algae, 2012, 16: 12−19. doi: 10.1016/j.hal.2011.12.007
    [29] 刘湘庆. 黄海绿潮形成过程中漂浮绿藻及微观繁殖体时空分布研究[D]. 青岛: 国家海洋局第一海洋研究所, 2014.

    Liu Xiangqing. Distributions of floating green algae and micro-propagules in the formatting and developing processes in the Yellow Sea in 2012[D]. Qingdao: First Institute of Oceanography, State Oceanic Administration, 2014.
    [30] 王超. 浒苔(Ulva prolifera)绿潮危害效应与机制的基础研究[D]. 青岛: 中国科学院海洋研究所, 2010.

    Wang Chao. Primary studies on the harmful effects and mechanisms of Ulva prolifera green tide[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2010.
    [31] 李玲, 张晴晴, 申禹. 水环境中营养盐磷在生物膜上吸附热力学研究[J]. 大连理工大学学报, 2016, 56(6): 561−566. doi: 10.7511/dllgxb201606002

    Li Ling, Zhang Qingqing, Shen Yu. Thermodynamics study of nutrient phosphorus adsorption on surface coatings in aquatic environment[J]. Journal of Dalian University of Technology, 2016, 56(6): 561−566. doi: 10.7511/dllgxb201606002
    [32] Carlson G, Silverstein J. Effect of molecular size and charge on biofilm sorption of organic matter[J]. Water Research, 1998, 32(5): 1580−1592. doi: 10.1016/S0043-1354(97)00354-0
    [33] Hodgkiss I J, Lu Songhui. The effects of nutrients and their ratios on phytoplankton abundance in Junk Bay, Hong Kong[J]. Hydrobiologia, 2004, 512(1/3): 215−229.
    [34] Xiu Bin, Liang Shengkang, He Xingliang, et al. Bioavailability of dissolved organic nitrogen and its uptake by Ulva prolifera: Implications in the outbreak of a green bloom off the coast of Qingdao, China[J]. Marine Pollution Bulletin, 2019, 140: 563−572. doi: 10.1016/j.marpolbul.2019.01.057
  • 加载中
图(9)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  58
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-30
  • 修回日期:  2019-07-22
  • 网络出版日期:  2020-11-18
  • 刊出日期:  2020-08-25

目录

    /

    返回文章
    返回