留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2018年南黄海浒苔绿潮迁移发展规律与营养盐相互关系探究

张海波 刘珂 苏荣国 石晓勇 裴绍峰 王修林 王国善 王爽

张海波,刘珂,苏荣国,等. 2018年南黄海浒苔绿潮迁移发展规律与营养盐相互关系探究[J]. 海洋学报,2020,42(8):30–39 doi: 10.3969/j.issn.0253-4193.2020.08.004
引用本文: 张海波,刘珂,苏荣国,等. 2018年南黄海浒苔绿潮迁移发展规律与营养盐相互关系探究[J]. 海洋学报,2020,42(8):30–39 doi: 10.3969/j.issn.0253-4193.2020.08.004
Zhang Haibo,Liu Ke,Su Rongguo, et al. Study on the coupling relationship between the development of Ulva prolifera green tide and nutrients in the southern Yellow Sea in 2018[J]. Haiyang Xuebao,2020, 42(8):30–39 doi: 10.3969/j.issn.0253-4193.2020.08.004
Citation: Zhang Haibo,Liu Ke,Su Rongguo, et al. Study on the coupling relationship between the development of Ulva prolifera green tide and nutrients in the southern Yellow Sea in 2018[J]. Haiyang Xuebao,2020, 42(8):30–39 doi: 10.3969/j.issn.0253-4193.2020.08.004

2018年南黄海浒苔绿潮迁移发展规律与营养盐相互关系探究

doi: 10.3969/j.issn.0253-4193.2020.08.004
基金项目: 国家重点研发计划(2016YFC1402101);中央高校基本科研业务费专项(201961011);国家自然科学基金(41306175);国家海洋局海洋减灾中心科研项目(2014AA060)。
详细信息
    作者简介:

    张海波(1990-),男,山东省枣庄市人,博士,主要从事海洋富营养化、近海生态环境演变研究。E-mail:zhanghb1990@163.com

    通讯作者:

    石晓勇,教授,主要从事近海水体富营养化,赤潮、绿潮灾害生消机制研究。E-mail:shixy@ouc.edu.cn

  • 中图分类号: X55;Q178.53;P76

Study on the coupling relationship between the development of Ulva prolifera green tide and nutrients in the southern Yellow Sea in 2018

  • 摘要: 根据2018年4月(春季,绿潮前期)和7月(夏季,绿潮后期) 南黄海营养盐、温度、盐度等水文参数及每日绿潮卫星监测数据,深入分析2018年绿潮的发展规律与营养盐结构特征之间的关系。结果表明:4月25在江苏南通外海首次发现浒苔绿潮,8月中旬在山东半岛近海消亡,其发展区域集中在122°E以西近海,且快速增殖阶段处在35°N以南江苏近海。各组分的营养盐浓度受沿岸径流、冷水团及生物作用等因素影响,均呈现江苏近海高外海以及北部低的特征。对比绿潮发展和营养盐分布呈现3个明显的绿潮−营养盐特征区域:高营养盐−绿潮快速发展区域(35°N以南,122°E 以西,江苏近海);低营养盐−绿潮消亡区域(35°N以北,122°E 以西,山东半岛外海域)及122°E以东外海无绿潮区域。不同特征区营养盐变化表明,江苏近岸较高的营养盐含量(${\rm{NO}}_3^- $-N>6.5 μmol/L, ${\rm{PO}}_4^{3-} $-P>0.27 μmol/L)和丰富来源是浒苔萌发和绿潮快速发展的重要物质基础,为绿潮发展提供了主要的氮、磷生源要素。北部山东半岛南外海较低的营养盐水平(7月,DIN<2 μmol/L, ${\rm{PO}}_4^{3-} $-P<0.03 μmol/L)是限制绿潮继续发展的重要因素。
  • 图  1  南黄海研究区域洋流系统(a)及站位设置(b, c)

    1. 鲁北沿岸流;2. 黄海沿岸流和苏北沿岸流;3. 长江冲淡水−台湾暖流;4. 黄海暖流;5. 青岛冷水团(春季);6. 黄海冷水团(夏季、秋季);A. 苏北沿岸径流

    Fig.  1  The current system (a) and sampling stations (b, c) in the study area of the southern Yellow Sea

    1. Lubei Coastal Current; 2. Yellow Sea Coastal Current and Subei Coastal Current; 3. Changjiang Diluted Water and Taiwan Warm Current; 4. Yellow Sea Warm Current; 5. Qingdao Cold Water Mass (Spring); 6. Yellow Sea Cold Water Mass (Summer, Autumn); A. Subei Coastal Diluted Water

    图  2  2018年南黄海漂浮浒苔绿潮规模(多边形为绿潮边界范围)和位置发展变化特征

    Fig.  2  The development of floating Ulva prolifera green tide in the southern Yellow Sea in 2018

    图  3  春季(2018年4月)南黄海各水层营养盐分布

    Fig.  3  Horizontal distributions of nutrients in the southern Yellow Sea in spring (April 2018)

    图  4  夏季(2018年7月)南黄海各水层营养盐分布

    Fig.  4  Horizontal distributions of nutrients in the southern Yellow Sea in summer (July 2018)

    图  5  2003−2018年江苏近岸海水主要观测站点(a)和水质标准分布(b)

    海水水质标准(GB 3097—1997)

    Fig.  5  The sampling stations (a) and the water quality in coastal area of the Jiangsu Province during 2003−2018 (b)

    Sea water quality standard (GB 3097—1997)

    表  1  南黄海调查海域春、夏季不同水团中温度(T)、盐度(S)、营养盐浓度

    Tab.  1  Salinity, temperature, nutrient concentrations in different water-masses of the study area in the southern Yellow Sea during spring and summer

    2018年4月
    整体表层中层底层沿岸水冷水团黄海暖流
    特征 S<30T<6.98℃S>33
    样品数/个59595981917
    T/℃9.21±2.6010.77±2.878.06±1.517.96±1.5814.11±1.25.64±0.929.38±1.11
    S32.19±1.0431.71±1.3332.55±0.4432.6±0.5029.12±0.9032.36±0.0833.28±0.25
    TSP/mg·L−170.42±85.1485.14±89.7851.87±74.1970.46±90.06106.75±17.1217.99±2.5432.15±27.61
    ${\rm{NO}}_3^- $-N/μmol·L−17.61±8.7510.48±11.84.72±3.715.75±3.9433.77±10.591.16±1.185.91±1.41
    ${\rm{NO}}_2^- $-N/μmol·L−10.14±0.100.14±0.090.15±0.100.15±0.110.20±0.040.07±0.050.22±0.11
    ${\rm{NH}}_4^+ $-N/μmol·L−11.11±0.660.94±0.561.19±0.731.3±0.691.18±1.001.65±0.500.70±0.34
    DIN/μmol·L−18.86±8.7111.56±11.886.06±3.577.21±3.7935.15±10.582.89±1.356.83±1.45
    ${\rm {PO}}_4^{3-} $-P/μmol·L−10.30±0.180.25±0.170.32±0.170.35±0.190.47±0.170.12±0.100.47±0.10
    ${\rm {SiO}}_3^{2-} $-Si/μmol·L−18.52±5.599.49±6.807.24±4.238.07±4.3920.85±4.662.26±2.1410.17±1.49
    N/P42.47±69.2959.7±77.9423.05±14.4837.11±82.7480.5±29.9963.13±114.4914.54±1.67
    Si/N1.13±0.621.13±0.811.17±0.461.08±0.360.61±0.090.70±0.451.54±0.32
    Si/P34.16±37.4744.74±41.2222.5±8.1930.05±44.8650.16±26.3331.52±63.1322.46±5.69
    2018年7月
    整体表层真光层中层底层沿岸水冷水团
    特征S<30T<14℃
    样品数/个613539611543
    T/℃20.20±6.8525.00±1.7323.69±3.3516.32±6.2914.23±6.9824.79±1.649.84±1.72
    S31.63±1.2630.6±1.3231.69±0.6532.44±0.6132.47±0.5528.66±0.8232.7±0.24
    TSP/mg·L−127.46±24.9938.56±37.1319.76±8.8819.88±8.2325.32±12.5370.98±47.0719.39±4.15
    ${\rm{NO}}_3^- $-N/μmol·L−14.85±5.296.18±6.873.02±3.933.88±3.865.67±3.6215.18±6.034.37±3.08
    ${\rm{NO}}_2^- $-N/μmol·L−10.39±0.470.37±0.340.51±0.620.46±0.570.46±0.540.45±0.320.13±0.15
    ${\rm{NH}}_4^+ $-N/μmol·L−10.87±0.821.25±1.050.75±0.540.61±0.480.66±0.571.82±1.410.50±0.46
    DIN/μmol·L−16.09±5.927.79±7.604.23±4.754.95±4.476.78±3.9417.45±6.325.00±2.93
    ${\rm {PO}}_4^{3-} $-P/μmol·L−10.19±0.210.13±0.170.10±0.130.21±0.190.36±0.230.31±0.230.37±0.23
    ${\rm {SiO}}_3^{2-} $-Si/μmol·L−17.33±6.366.58±5.966.51±7.737.96±6.8610.38±6.0412.67±6.017.44±3.92
    N/P58.23±72.7284.9±65.1071.52±110.1232.5±34.928.19±26.1387.4±54.917.84±20.49
    Si/N2.30±3.401.91±2.433.85±6.231.95±1.011.62±0.440.74±0.381.75±0.74
    Si/P75.23±99.3897.83±134.98100.48±85.9951.87±46.5842.24±34.9565.48±57.2927.00±21.25
      注:−表示无数据。
    下载: 导出CSV

    表  2  调查海域绿潮暴发前后浒苔漂移区域与非浒苔区域表层营养盐对比

    Tab.  2  The variations of nutrients and hydrological parameters of surface layer in different development phases area of green tides

    调查海域表层浒苔绿潮漂移海域
    122°E以西海域35°N以南高营养盐区域
    2018年4月2018年7月变化量/%2018年4月2018年7月变化量/%
    样品数/个33332524
    T/℃11.80±3.3023.84±1.0912.04/10813.34±1.9923.63±1.0310.29/77
    S31.03±1.3930.28±1.19−0.75/230.61±1.3530.01±1.26−0.60/2
    TSP/mg·L−1125.04±100.1260.66±41.23−64.38/51159.28±91.2482.71±30.84−76.57/48
    ${\rm{NO}}_3^- $-N/μmol·L−114.52±14.198.46±7.38−6.06/4218.98±13.5111.25±6.75−7.73/41
    ${\rm{NO}}_2^- $-N/μmol·L−10.15±0.090.38±0.270.23/1530.18±0.080.46±0.250.28/156
    ${\rm{NH}}_4^+ $-N/μmol·L−11.05±0.641.43±0.970.38/361.00±0.691.72±0.970.72/72
    DIN/μmol·L−115.72±14.2310.27±7.78−5.45/3720.16±13.6013.43±6.74−6.73/33
    ${\rm {PO}}_4^{3-} $-P/μmol·L−10.22±0.190.17±0.20−0.05/230.28±0.190.23±0.21−0.05/18
    N/P81.9±90.1897.91±60.7316/1992.64±99.5891.17±55.59−1.47/2
    调查海域表层浒苔绿潮漂移海域非浒苔漂移海域
    35°N以北低营养盐区域122°E以东外海
    2018年4月2018年7月变化量/%2018年4月2018年7月变化量/%
    样品数/个892729
    T/℃7.00±1.1024.41±1.0917.41/2499.58±1.5226.28±1.3416.7/174
    S32.34±0.0731.00±0.48−1.34/432.56±0.4831.00±1.37−1.56/5
    TSP/mg·L−118.03±2.3114.13±2.54−3.9/2238.44±38.4918.08±13.89−20.36/53
    ${\rm{NO}}_3^- $-N/μmol·L−10.59±1.111.01±1.110.42/715.37±3.993.72±5.18−1.65/31
    ${\rm{NO}}_2^- $-N/μmol·L−10.04±0.030.17±0.210.13/3250.13±0.090.38±0.420.25/192
    ${\rm{NH}}_4^+ $-N/μmol·L−11.20±0.460.67±0.39−0.53/440.79±0.411.05±1.110.26/33
    DIN/μmol·L−11.83±1.151.83±1.240/06.28±3.945.12±6.38−1.16/18
    ${\rm {PO}}_4^{3-} $-P/μmol·L−10.05±0.010.02±0.01−0.03/600.29±0.140.08±0.10−0.21/72
    N/P48.34±38.44115.9±73.2567.56/14033.78±47.5668.7±66.7434.92/103
    下载: 导出CSV
  • [1] Zhou Mingjiang, Liu Dongyan, Anderson D M, et al. Introduction to the special issue on green tides in the Yellow Sea[J]. Estuarine, Coastal and Shelf Science, 2015, 163: 3−8. doi: 10.1016/j.ecss.2015.06.023
    [2] Hiraoka M, Ohno M, Kawaguchi S, et al. Crossing test among floating Ulva thalli forming ‘green tide’ in Japan[J]. Hydrobiologia, 2004, 512(1): 239−245.
    [3] Charlier R H, Morand P, Finkl C W, et al. Green tides on the Brittany coasts[J]. Environmental Research, Engineering and Management, 2007, 3(41): 52−59.
    [4] Zhao Jin, Jiang Peng, Liu Zhengyi, et al. The Yellow Sea green tides were dominated by one species, Ulva (Enteromorpha) prolifera, from 2007 to 2011[J]. Chinese Science Bulletin, 2013, 58(19): 2298−2302. doi: 10.1007/s11434-012-5441-3
    [5] 王宗灵, 傅明珠, 肖洁, 等. 黄海浒苔绿潮研究进展[J]. 海洋学报, 2018, 40(2): 1−13.

    Wang Zongling, Fu Mingzhu, Xiao Jie, et al. Progress on the study of the Yellow Sea green tides caused by Ulva prolifera[J]. Haiyang Xuebao, 2018, 40(2): 1−13.
    [6] Gao Shan, Chen Xiaoyuan, Yi Qianqian, et al. A strategy for the proliferation of Ulva prolifera, main causative species of green tides, with formation of sporangia by fragmentation[J]. PLoS One, 2010, 5(1): e8571. doi: 10.1371/journal.pone.0008571
    [7] Zhao Xiaohui, Cui Jianjun, Zhang Jianheng, et al. Reproductive strategy of the floating alga Ulva prolifera in blooms in the Yellow Sea based on a combination of zoid and chromosome analysis[J]. Marine Pollution Bulletin, 2019, 146: 584−590. doi: 10.1016/j.marpolbul.2019.07.018
    [8] 卢健, 张启龙, 李安春. 苏北沿岸流对浒苔暴发及漂移过程的影响[J]. 海洋科学, 2014, 38(10): 83−89. doi: 10.11759/hykx20130128001

    Lu Jian, Zhang Qilong, Li Anchun. The influence of Subei coastal current on the outbreak and drift of Enteromorpha prolifera[J]. Marine Sciences, 2014, 38(10): 83−89. doi: 10.11759/hykx20130128001
    [9] Strokal M, Kroeze C, Wang Mengru, et al. Reducing future river export of nutrients to coastal waters of China in optimistic scenarios[J]. Science of the Total Environment, 2017, 579: 517−528. doi: 10.1016/j.scitotenv.2016.11.065
    [10] Liang Zhongyao, Wu Sifeng, Chen Huili, et al. A probabilistic method to enhance understanding of nutrient limitation dynamics of phytoplankton[J]. Ecological Modelling, 2018, 368: 404−410. doi: 10.1016/j.ecolmodel.2017.11.004
    [11] Anderson D M, Cembella A D, Hallegraeff G M. Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management[J]. Annual Review of Marine Science, 2012, 4: 143−176. doi: 10.1146/annurev-marine-120308-081121
    [12] Wei Qinsheng, Wang Baodong, Yao Qingzhen, et al. Physical-biogeochemical interactions and potential effects on phytoplankton and Ulva prolifera in the coastal waters off Qingdao (Yellow Sea, China)[J]. Acta Oceanologica Sinica, 2018, 38(2): 11−23.
    [13] Shi Xiaoyong, Qi Mingyan, Tang Hongjie, et al. Spatial and temporal nutrient variations in the Yellow Sea and their effects on Ulva prolifera blooms[J]. Estuarine, Coastal and Shelf Science, 2015, 163: 36−43. doi: 10.1016/j.ecss.2015.02.007
    [14] Chen Lei, Li Chaolun, Zhou Konglin, et al. Effects of nutrient limitations on three species of zooplankton[J]. Acta Oceanologica Sinica, 2018, 37(4): 58−68. doi: 10.1007/s13131-017-1122-z
    [15] Li Hongmei, Zhang Yongyu, Chen Jing, et al. Nitrogen uptake and assimilation preferences of the main green tide alga Ulva prolifera in the Yellow Sea, China[J]. Journal of Applied Phycology, 2018, 31(1): 625−635.
    [16] 李瑞香, 吴晓文, 韦钦胜, 等. 不同营养盐条件下浒苔的生长[J]. 海洋科学进展, 2009, 27(2): 211−216. doi: 10.3969/j.issn.1671-6647.2009.02.011

    Li Ruixiang, Wu Xiaowen, Wei Qinsheng, et al. Growth of Enteromorpha prolifera under different nutrient conditions[J]. Advances in Marine Science, 2009, 27(2): 211−216. doi: 10.3969/j.issn.1671-6647.2009.02.011
    [17] Wang Baodong, Wang Xiulin, Zhan Run. Nutrient conditions in the Yellow Sea and the East China Sea[J]. Estuarine, Coastal and Shelf Science, 2003, 58(1): 127−136. doi: 10.1016/S0272-7714(03)00067-2
    [18] Li Dongxue, Gao Zhiqiang, Song Debin, et al. Characteristics and influence of green tide drift and dissipation in Shandong Rongcheng coastal water based on remote sensing[J]. Estuarine, Coastal and Shelf Science, 2019, 227: 106335. doi: 10.1016/j.ecss.2019.106335
    [19] Zhang Haibo, Su Rongguo, Shi Xiaoyong, et al. Role of nutrients in the development of floating green tides in the southern Yellow Sea, China, in 2017[J]. Marine Pollution Bulletin, 2020, 156: 111197. doi: 10.1016/j.marpolbul.2020.111197
    [20] 祝陈坚. 海水分析化学实验[M]. 青岛: 中国海洋大学出版社, 2006.

    Zhu Chenjian. Experiment of Seawater Analytical Chemistry[M]. Qingdao: China Ocean University Press, 2006.
    [21] Xu Qing, Zhang Hongyuan, Cheng Yongcun. Multi-sensor monitoring of Ulva prolifera blooms in the Yellow Sea using different methods[J]. Frontiers of Earth Science, 2016, 10(2): 378−388. doi: 10.1007/s11707-015-0528-1
    [22] Qi Lin, Hu Chuanmin, Xing Qianguo, et al. Long-term trend of Ulva prolifera blooms in the western Yellow Sea[J]. Harmful Algae, 2016, 58: 35−44. doi: 10.1016/j.hal.2016.07.004
    [23] Sun Xiao, Wu Mengquan, Xing Qianguo, et al. Spatio-temporal patterns of Ulva prolifera blooms and the corresponding influence on chlorophyll-a concentration in the southern Yellow Sea, China[J]. Science of the Total Environment, 2018, 640-641: 807−820. doi: 10.1016/j.scitotenv.2018.05.378
    [24] 自然资源部海洋预警监测司. 中国海洋灾害公报[R]. 北京: 自然资源部, 2008-2019.

    Marine Early Warning and Monitoring Division, Ministry of Natural Resources. Bulletin of China marine disaster[R]. Beijing: Ministry of Natural Resources, 2008−2019.
    [25] 吴孟泉, 郭浩, 张安定, 等. 2008年—2012年山东半岛海域浒苔时空分布特征研究[J]. 光谱学与光谱分析, 2014, 34(5): 1312−1318. doi: 10.3964/j.issn.1000-0593(2014)05-1312-07

    Wu Mengquan, Guo Hao, Zhang Anding, et al. Research on the characteristics of Ulva prolifera in Shandong Peninsula during 2008−2012 based on MODIS data[J]. Spectroscopy and Spectral Analysis, 2014, 34(5): 1312−1318. doi: 10.3964/j.issn.1000-0593(2014)05-1312-07
    [26] Zhang Jianheng, Huo Yuanzi, Zhang Zhenglong, et al. Variations of morphology and photosynthetic performances of Ulva prolifera during the whole green tide blooming process in the Yellow Sea[J]. Marine Environmental Research, 2013, 92: 35−42. doi: 10.1016/j.marenvres.2013.08.009
    [27] 丁月旻. 黄海浒苔绿潮中生源要素的迁移转化及对生态环境的影响[D]. 青岛: 中国科学院研究生院(海洋研究所), 2014.

    Ding Yuemin. Impacts of Ulva (Enteromorpha) prolifera in the green tide on the Yellow Sea ecological environment—implications from migration and transformation of biogenic elements[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2014.
    [28] 马洪瑞, 陈聚法, 崔毅, 等. 灌河和射阳河水质状况分析及主要污染物入海量估算[J]. 渔业科学进展, 2010, 31(3): 92−99. doi: 10.3969/j.issn.1000-7075.2010.03.013

    Ma Hongrui, Chen Jufa, Cui Yi, et al. Analysis of water quality and assessment of major pollutants input to the sea from the Guan River and Sheyang River[J]. Progress in Fishery Sciences, 2010, 31(3): 92−99. doi: 10.3969/j.issn.1000-7075.2010.03.013
    [29] 靳姗姗, 孙俊川, 魏泽勋. 渤海沿岸流季节变化对青岛冷水团影响的初步分析[J]. 海洋科学进展, 2017, 35(3): 317−328. doi: 10.3969/j.issn.1671-6647.2017.03.002

    Jin Shanshan, Sun Junchuan, Wei Zexun. Effects of the seasonal variability of the Bohai Sea coastal current on the Qingdao Cold Water Mass[J]. Advances in Marine Science, 2017, 35(3): 317−328. doi: 10.3969/j.issn.1671-6647.2017.03.002
    [30] 赵胜, 于非, 刁新源, 等. 黄海暖流的路径及机制研究[J]. 海洋科学, 2011, 35(11): 73−80.

    Zhao Sheng, Yu Fei, Diao Xinyuan, et al. The path and mechanism of the Yellow Sea Warm Current[J]. Marine Sciences, 2011, 35(11): 73−80.
    [31] Zhang Qilong, Liu Xingquan, Cheng Minghua, et al. Characteristics and formation causes of Qingdao Cold Water Mass[J]. Chinese Journal of Oceanology and Limnology, 2002, 20(4): 303−308. doi: 10.1007/BF02847919
    [32] Fu Mingzhu, Sun Ping, Wang Zongling, et al. Structure, characteristics and possible formation mechanisms of the subsurface chlorophyll maximum in the Yellow Sea Cold Water Mass[J]. Continental Shelf Research, 2018, 165: 93−105. doi: 10.1016/j.csr.2018.07.007
    [33] Wang Changyou, Su Rongguo, Guo Laodong, et al. Nutrient absorption by Ulva prolifera and the growth mechanism leading to green-tides[J]. Estuarine, Coastal and Shelf Science, 2019, 227: 106329. doi: 10.1016/j.ecss.2019.106329
    [34] 吴晓文, 李瑞香, 徐宗军, 等. 营养盐对浒苔生长影响的围隔生态实验[J]. 海洋科学进展, 2010, 28(4): 538−544. doi: 10.3969/j.issn.1671-6647.2010.04.015

    Wu Xiaowen, Li Ruixiang, Xu Zongjun, et al. Mesocosm experiments of nutrient effects on enteromorpha prolifera growth[J]. Advances in Marine Science, 2010, 28(4): 538−544. doi: 10.3969/j.issn.1671-6647.2010.04.015
    [35] Redfield A C. The influence of organisms on the composition of sea-water[J]. Sea, 1963, 40(6): 640−644.
    [36] Zheng Mingshan, Lin Jiajia, Zhou Shidan, et al. Salinity mediates the effects of nitrogen enrichment on the growth, photosynthesis, and biochemical composition of Ulva prolifera[J]. Environmental Science and Pollution Research, 2019, 26(19): 19982−19990. doi: 10.1007/s11356-019-05364-y
    [37] Li Hongmei, Zhang Yongyu, Han Xiurong, et al. Growth responses of Ulva prolifera to inorganic and organic nutrients: Implications for macroalgal blooms in the southern Yellow Sea, China[J]. Scientific Reports, 2016, 6: 26498. doi: 10.1038/srep26498
    [38] 齐明燕. 浒苔(Ulva prolifera)及缘管浒苔(Ulva linza)对不同形态氮营养盐的吸收利用研究[D]. 青岛: 中国海洋大学, 2015.

    Qi Mingyan. Study on the uptake of different nitrogen by Ulva prolifera and Ulva linz[D]. Qingdao: Ocean University of China, 2015.
    [39] 李俭平. 浒苔对氮营养盐的响应及其氮营养盐吸收动力学和生理生态研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2011.

    Li Jianping. The response to nitrogen nutrient, and the uptake kinetics mechanism of nitrogen and ecophysiological analysis of Enteromorpha prolifera[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2011.
    [40] 商兆堂, 蒋名淑, 濮梅娟. 江苏紫菜养殖概况和气候适宜性分析[J]. 安徽农业科学, 2008, 36(13): 5315−5319. doi: 10.3969/j.issn.0517-6611.2008.13.053

    Shang Zhaotang, Jiang Mingshu, Pu Meijuan. Analysis of the general situations of laver culture in Jiangsu Province and its climatic suitability[J]. Journal of Anhui Agricultural Sciences, 2008, 36(13): 5315−5319. doi: 10.3969/j.issn.0517-6611.2008.13.053
    [41] Qi Jianhua, Shi Jihui, Gao Huiwang, et al. Atmospheric dry and wet deposition of nitrogen species and its implication for primary productivity in coastal region of the Yellow Sea, China[J]. Atmospheric Environment, 2013, 81: 600−608. doi: 10.1016/j.atmosenv.2013.08.022
    [42] Li Hongmei, Zhang Yongyu, Tang Hongjie, et al. Spatiotemporal variations of inorganic nutrients along the Jiangsu coast, China, and the occurrence of macroalgal blooms (green tides) in the southern Yellow Sea[J]. Harmful Algae, 2017, 63: 164−172. doi: 10.1016/j.hal.2017.02.006
    [43] Wei Qinsheng, Wang Baodong, Yao Qingzhen, et al. Hydro-biogeochemical processes and their implications for Ulva prolifera blooms and expansion in the world’s largest green tide occurrence region (Yellow Sea, China)[J]. Science of the Total Environment, 2018, 645: 257−266. doi: 10.1016/j.scitotenv.2018.07.067
    [44] 胡劲召, 齐丹, 徐功娣. 浒苔对富营养化海水中氮磷去除效果的研究[J]. 海南热带海洋学院学报, 2017, 24(5): 27−30, 41.

    Hu Jinzhao, Qi Dan, Xu Gongdi. Enteromorpha's N-P removal efficiency in the eutrophicated seawater[J]. Journal of Hainan Tropical Ocean University, 2017, 24(5): 27−30, 41.
    [45] 张艾芹, 江辉煌, 顾正平, 等. 江苏近岸海域表层海水中营养盐组成、分布及季节变化特征[J]. 海洋湖沼通报, 2018(2): 49−59.

    Zhang Aiqin, Jiang Huihuang, Gu Zhengping, et al. Composition, distribution and seasonal variation of surface seawater nutrients in Jiangsu coastal waters[J]. Transactions of Oceanology and Limnology, 2018(2): 49−59.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  54
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-31
  • 修回日期:  2020-06-02
  • 网络出版日期:  2020-11-18
  • 刊出日期:  2020-08-25

目录

    /

    返回文章
    返回