留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光和温度对两种绿潮藻光合途径及抗氧化功能的影响

马茜 王玉珏 孙西艳 刘东艳

马茜,王玉珏,孙西艳,等. 光和温度对两种绿潮藻光合途径及抗氧化功能的影响[J]. 海洋学报,2020,42(8):21–29 doi: 10.3969/j.issn.0253-4193.2020.08.003
引用本文: 马茜,王玉珏,孙西艳,等. 光和温度对两种绿潮藻光合途径及抗氧化功能的影响[J]. 海洋学报,2020,42(8):21–29 doi: 10.3969/j.issn.0253-4193.2020.08.003
Ma Qian,Wang Yujue,Sun Xiyan, et al. Effects of light and temperature on the photosynthetic pathway and antioxidant function of two green tide species[J]. Haiyang Xuebao,2020, 42(8):21–29 doi: 10.3969/j.issn.0253-4193.2020.08.003
Citation: Ma Qian,Wang Yujue,Sun Xiyan, et al. Effects of light and temperature on the photosynthetic pathway and antioxidant function of two green tide species[J]. Haiyang Xuebao,2020, 42(8):21–29 doi: 10.3969/j.issn.0253-4193.2020.08.003

光和温度对两种绿潮藻光合途径及抗氧化功能的影响

doi: 10.3969/j.issn.0253-4193.2020.08.003
基金项目: 科技部国家重点研发计划(2016YFC1402106)。
详细信息
    作者简介:

    马茜(1992-),女,四川省广元市人,主要从事海洋藻类生物学研究。E-mail:635714594@qq.com

    通讯作者:

    刘东艳,女,研究员,主要从事海洋生态学研究。E-mail:dyliu@sklec.ecnu.edu.cn

  • 中图分类号: P714+.5;Q949.2

Effects of light and temperature on the photosynthetic pathway and antioxidant function of two green tide species

  • 摘要: 绿潮是潮间带绿藻大量增殖形成的高生物量生态灾害,其暴发不仅受到温度、营养盐等环境因素的驱动,而且与自身光合能力的强弱密切相关。本研究以绿潮物种—肠浒苔(Ulva intestinalis)和Ulva expansa为研究对象,通过室外培养实验,检测了它们在夏季高温、高光强条件下的光合途径与抗氧化生理特征,并分析了与光合产物的对应关系。研究结果表明,肠浒苔与U. expansa的光合途径与抗氧化能力存在显著差异。前者的C4光合途径关键酶活性在光合作用过程中出现高表达特征,与光、温度存在显著相关性,C3光合途径关键酶活性在中午受到强光抑制;组织δ13C的变化范围为−17.1‰~−15.7‰,表明其光合作用可能由C3和C4途径共同参与。后者的C4光合途径关键酶活性表达较弱,且与光、温度不存在显著相关性,C3光合途径关键酶活性没有出现明显的光抑制现象;组织δ13C的范围为−23.5‰~−21.9‰,表明其光合作用主要依靠C3途径进行。此外,肠浒苔在培养过程中表现出了较强的抗氧化能力,可能与其在高温、高光强条件下启动C4光合途径密切相关。肠浒苔与U. expansa的比较研究说明,藻类C4光合途径存在显著种间差异性。
  • 图  1  室外培养实验场景

    Fig.  1  The outdoor culture experiment

    图  2  两种绿藻C3关键酶(Rubisco)与C4关键酶(PEPCase、PEPCKase)活性的日变化特征比较

    *表示两个物种之间酶活性具有显著性差异,误差棒上的不同小写字母(a, b, c)表示同一物种在不同时间下酶活性有显著性差异(p<0.05)

    Fig.  2  The comparison of diurnal variations of C3 key enzyme (Rubisco) and C4 key enzyme (PEPCase and PEPCKase) activities between U. intestinalis and U. expansa

    *represents there is a significant difference in enzyme activity between the two species. Different lowercase letters (a, b, c) on the error bars indicate that the same species has a significant difference (p<0.05) in enzyme activity at different times

    图  3  两种绿藻组织δ13C和$f_{{{\rm HCO}_{3}^{-}}} $的日变化特征

    Fig.  3  The diurnal variations of δ13C and $f_{{{\rm HCO}_{3}^{-}}} $ in the tissue of U. intestinalis and U. expansa

    图  4  两种绿藻抗氧化物酶(SOD、POD)活性和MDA含量的日变化特征比较

    *表示两个物种之间酶活性具有显著性差异,误差棒上的不同小写字母(a, b, c)表示同一物种在不同时间下酶活性有显著性差异(p<0.05)

    Fig.  4  The comparison of antioxidant enzymes (SOD, POD) actirities and MDA content between U. intestinalis and U. expansa, corresponding to diurnal variations

    *represents there is a significant difference in enzyme activity between the two species. Different lowercase letters (a, b, c) on the error bars indicate that the same species has a significant difference (p<0.05) in enzyme activity at different times

    表  1  两种绿藻光合作用酶活性与温度、光强的相关性

    Tab.  1  Correlations between photosynthetic enzyme activities of U. intestinalis and U. expansa vs. temperature and light intensity

    参数肠浒苔U. expansa
    温度光强温度光强
    Rubisco0.0800.1180.700**0.396
    PEPCase0.429−0.0480.0680.458
    PEPCKase0.688**0.590*−0.648**−0.515*
      注:**表示在0.01水平(双侧)上显著相关;*表示在0.05水平(双侧)上显著相关。
    下载: 导出CSV

    表  2  两种绿藻的抗氧化酶(SOD,POD)活性以及MDA含量与温度、光强的相关性

    Tab.  2  Correlation between antioxidase activities, MDA content of U. intestinalis and U. expansa vs. temperature and light intensity

    参数肠浒苔U. expansa
    温度光强温度光强
    SOD0.578*0.825**0.2770.432
    POD0.171−0.2100.2960.368
    MDA0.561*0.627**0.3900.145
      注:**表示在0.01水平(双侧)上显著相关;*表示在0.05水平(双侧)上显著相关。
    下载: 导出CSV
  • [1] Fletcher R L. The occurrence of “green tides” — a review[M]//Schramm W, Nienhuis P H. Marine Benthic Vegetation. Berlin: Springer, 1996: 7−43.
    [2] Blomster J, Bäck S, Fewer D P, et al. Novel morphology in Enteromorpha (Ulvophyceae) forming green tides[J]. American Journal of Botany, 2002, 89(11): 1756−1763. doi: 10.3732/ajb.89.11.1756
    [3] Bäck S, Lehvo A, Blomster J. Mass occurrence of unattached Enteromorpha intestinalis on the Finnish Baltic Sea coast[J]. Annales Botanici Fennici, 2000, 37: 155−161.
    [4] Cohen R A, Fong P. Physiological responses of a bloom-forming green macroalga to short-term change in salinity, nutrients, and light help explain its ecological success[J]. Estuaries, 2004, 27(2): 209−216. doi: 10.1007/BF02803378
    [5] Kamer K, Boyle K A, Fong P. Macroalgal bloom dynamics in a highly eutrophic southern California estuary[J]. Estuaries, 2001, 24(4): 623−635. doi: 10.2307/1353262
    [6] Liu Dongyan, Keesing J K, Xing Qianguo, et al. World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China[J]. Marine Pollution Bulletin, 2009, 58(6): 888−895. doi: 10.1016/j.marpolbul.2009.01.013
    [7] Wang Chao, Yu Rencheng, Zhou Mingjiang. Effects of the decomposing green macroalga Ulva (Enteromorpha) prolifera on the growth of four red-tide species[J]. Harmful Algae, 2012, 16: 12−19. doi: 10.1016/j.hal.2011.12.007
    [8] Rosenberg C, Ramus J. Ecological growth strategies in the seaweeds Gracilaria foliifera (Rhodophyceae) and Ulva sp. (Chlorophyceae): soluble nitrogen and reserve carbohydrates[J]. Marine Biology, 1982, 66(3): 251−259. doi: 10.1007/BF00397030
    [9] Kim J H, Kang E J, Park M G, et al. Effects of temperature and irradiance on photosynthesis and growth of a green-tide-forming species (Ulva linza) in the Yellow Sea[J]. Journal of Applied Phycology, 2011, 23(3): 421−432. doi: 10.1007/s10811-010-9590-y
    [10] Bassham J A. Kinetic studies of the photosynthetic carbon reduction cycle[J]. Annual Review of Plant Physiology, 1964, 15(1): 101−120. doi: 10.1146/annurev.pp.15.060164.000533
    [11] Raven J A. Carbon dioxide fixation[M]//Stewart W D P. Algal Physiology and Biochemistry. Berkeley: University of California Press, 1974: 434−455.
    [12] Cassar N, Laws E A. Potential contribution of β-carboxylases to photosynthetic carbon isotope fractionation in a marine diatom[J]. Phycologia, 2007, 46(3): 307−314. doi: 10.2216/06-50.1
    [13] Karekar M D, Joshi G V. Photosynthetic carbon metabolism in marine algae[J]. Botanica Marina, 1973, 16(4): 216−220.
    [14] Reinfelder J R, Kraepiel A M L, Morel F M M. Unicellular C4 photosynthesis in a marine diatom[J]. Nature, 2000, 407(6807): 996−999. doi: 10.1038/35039612
    [15] Xu Jianfang, Fan Xiao, Zhang Xiaowen, et al. Evidence of coexistence of C3 and C4 photosynthetic pathways in a green-tide-forming alga, Ulva prolifera[J]. PLoS One, 2012, 7(5): e37438. doi: 10.1371/journal.pone.0037438
    [16] Valiela I, Liu Dongyan, Lloret J, et al. Stable isotopic evidence of nitrogen sources and C4 metabolism driving the world's largest macroalgal green tides in the Yellow Sea[J]. Scientific Reports, 2018, 8(1): 17437. doi: 10.1038/s41598-018-35309-3
    [17] Reiskind J B, Beer S, Bowes G. Photosynthesis, photorespiration and ecophysiological interactions in marine macroalgae[J]. Aquatic Botany, 1989, 34(1/3): 131−152.
    [18] Cooper J P. Potential production and energy conversion in temperate and tropical grasses[J]. Herbage Abstracts, 1970, 40: 1−13.
    [19] Cooper J P, Tainton N M. Light and temperature requirements for the growth of tropical and temperate grasses[J]. Herbage Abstract, 1968, 38(3): 167−177.
    [20] Joshi M C, Boyer J S, Kramer P J. Growth, carbon dioxide exchange, transpiration, and transpiration ratio of pineapple[J]. Botanical Gazette, 1965, 126(3): 174−179. doi: 10.1086/336315
    [21] Black C C Jr. Photosynthetic carbon fixation in relation to net CO2 uptake[J]. Annual Review of Plant Physiology, 1973, 24(1): 253−286. doi: 10.1146/annurev.pp.24.060173.001345
    [22] Bjorkman O, Boardman N K, Anderson J M, et al. Effect of light intensity during growth of Atriplex patula on the capacity of photosynthetic reactions, chloroplast components and structure[J]. Yearbook Carnegie Institution Washington, 1972, 71: 115−135.
    [23] Scandalios J G. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses[J]. Brazilian Journal of Medical and Biological Research, 2005, 38(7): 995−1014. doi: 10.1590/S0100-879X2005000700003
    [24] Uzilday B, Turkan I, Ozgur R, et al. Strategies of ROS regulation and antioxidant defense during transition from C3 to C4 photosynthesis in the genus Flaveria under PEG-induced osmotic stress[J]. Journal of Plant Physiology, 2014, 171(1): 65−75. doi: 10.1016/j.jplph.2013.06.016
    [25] Hughey J R, Miller K A, Gabrielson P W. Mitogenome analysis of a green tide forming Ulva from California, USA confirms its identity as Ulva expansa (Ulvaceae, Chlorophyta)[J]. Mitochondrial DNA Part B, 2018, 3(2): 1302−1303. doi: 10.1080/23802359.2018.1535859
    [26] Shultz D J, Calder J A. Organic carbon 13C/12C variations in estuarine sediments[J]. Geochimica et Cosmochimica Acta, 1976, 40(4): 381−385. doi: 10.1016/0016-7037(76)90002-8
    [27] Cornwall C E, Revill A T, Hall-Spencer J M, et al. Inorganic carbon physiology underpins macroalgal responses to elevated CO2[J]. Scientific Reports, 2017, 7: 46297. doi: 10.1038/srep46297
    [28] Tiunov A V. Stable isotopes of carbon and nitrogen in soil ecological studies[J]. Biology Bulletin, 2007, 34(4): 395−407. doi: 10.1134/S1062359007040127
    [29] Faganeli J, Vukovič A, Saleh F I, et al. C: N: P ratios and stable carbon and hydrogen isotopes in the benthic marine algae, Ulva rigida C. Ag. and Fucusvirsoides J. Ag[J]. Journal of Experimental Marine Biology and Ecology, 1986, 102(2/3): 153−166.
    [30] Guy R D, Vanlerberghe G C, Turpin D H. Significance of phosphoenolpyruvate carboxylase during ammonium assimilation: carbon isotope discrimination in photosynthesis and respiration by the N-limited green alga Selenastrum minutum[J]. Plant Physiology, 1989, 89(4): 1150−1157. doi: 10.1104/pp.89.4.1150
    [31] Sültemeyer D. Carbonic anhydrase in eukaryotic algae: characterization, regulation, and possible function during photosynthesis[J]. Canadian Journal of Botany, 1998, 76(6): 962−972. doi: 10.1139/b98-082
    [32] Badger M R, Andrews T J, Whitney S M, et al. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae[J]. Canadian Journal of Botany, 1998, 76(6): 1052−1071. doi: 10.1139/b98-074
    [33] McGinn P J, Morel F M M. Expression and inhibition of the carboxylating and decarboxylating enzymes in the photosynthetic C4 pathway of marine diatoms[J]. Plant Physiology, 2008, 146(1): 300−309. doi: 10.1104/pp.107.110569
    [34] Johnston A M, Raven J A, Beardall J, et al. Photosynthesis in a marine diatom[J]. Nature, 2001, 412(6842): 40−41.
    [35] Granum E, Raven J A, Leegood R C. How do marine diatoms fix 10 billion tonnes of inorganic carbon per year?[J]. Canadian Journal of Botany, 2005, 83(7): 898−908. doi: 10.1139/b05-077
    [36] Haimovich-Dayan M, Garfinkel N, Ewe D, et al. The role of C4 metabolism in the marine diatom Phaeodactylum tricornutum[J]. New Phytologist, 2013, 197(1): 177−185. doi: 10.1111/j.1469-8137.2012.04375.x
    [37] Gowik U, Westhoff P. The path from C3 to C4 photosynthesis[J]. Plant Physiology, 2011, 155(1): 56−63. doi: 10.1104/pp.110.165308
    [38] Roberts K, Granum E, Leegood R C, et al. C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control[J]. Plant Physiology, 2007, 145(1): 230−235. doi: 10.1104/pp.107.102616
    [39] Rao S, Reiskind J, Bowes G. Light regulation of the photosynthetic phosphoenolpyruvate carboxylase (PEPC) in Hydrilla verticillata[J]. Plant and Cell Physiology, 2006, 47(9): 1206−1216. doi: 10.1093/pcp/pcj091
    [40] Edwards G E, Nakamoto H, Burnell J N, et al. Pyruvate, Pi Dikinase and NADP-malate dehydrogenase in C4 photosynthesis: properties and mechanism of light/dark regulation[J]. Annual Review of Plant Physiology, 1985, 36(1): 255−286. doi: 10.1146/annurev.pp.36.060185.001351
    [41] Moss D N, Musgrave R B, Lemon E R. Photosynthesis under field conditions. III. Some effects of light, carbon dioxide, temperature, and soil moisture on photosynthesis, respiration, and transpiration of corn[J]. Crop Science, 1961, 1(2): 83−87. doi: 10.2135/cropsci1961.0011183X000100020001x
    [42] Kalt-Torres W, Kerr P S, Usuda H, et al. Diurnal changes in maize leaf photosynthesis[J]. Plant Physiology, 1987, 83(2): 283−288. doi: 10.1104/pp.83.2.283
    [43] 姜振升, 刘培培, 王美玲, 等. 黄瓜幼苗Rubisco与Rubisco活化酶对光强的响应[J]. 西北农业学报, 2011, 20(9): 95−99. doi: 10.3969/j.issn.1004-1389.2011.09.019

    Jiang Zhensheng, Liu Peipei, Wang Meiling, et al. Response of Rubisco and Rubisco activase in cucumber seedlings to light intensity[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2011, 20(9): 95−99. doi: 10.3969/j.issn.1004-1389.2011.09.019
    [44] 翁晓燕, 陆庆, 蒋德安. 水稻Rubisco活化酶在调节Rubisco活性和光合日变化中的作用[J]. 中国水稻科学, 2001, 15(1): 35−40. doi: 10.3321/j.issn:1001-7216.2001.01.007

    Weng Xiaoyan, Lu Qing, Jiang Dean. Rubisco activase and its regulation on diurnal changes of photosynthetic rate and the activity of Ribulose-1, 5-bisphosphate carboxyase/oxygenase (Rubisco)[J]. Chinese Journal of Rice Science, 2001, 15(1): 35−40. doi: 10.3321/j.issn:1001-7216.2001.01.007
    [45] Muraoka H, Tang Yanhong, Terashima I, et al. Contributions of diffusional limitation, photoinhibition and photorespiration to midday depression of photosynthesis in Arisaema heterophyllum in natural high light[J]. Plant, Cell and Environment, 2000, 23(3): 235−250. doi: 10.1046/j.1365-3040.2000.00547.x
    [46] Demmig-Adams B. Survey of thermal energy dissipation and pigment composition in sun and shade leaves[J]. Plant and Cell Physiology, 1998, 39(5): 474−482. doi: 10.1093/oxfordjournals.pcp.a029394
    [47] 黄雪清, 焦德茂. 转C4光合酶基因水稻株系的抗光氧化特性[J]. 植物生理学报, 2001, 27(5): 393−400. doi: 10.3321/j.issn:1671-3877.2001.05.006

    Huang Xueqing, Jiao Demao. The characteristics of resistance to photooxidation of transgenic rice (Oryza sativa L.) plants with maize genes coding for C4 photosynthesis enzyme[J]. Acta Phytophysiologica Sinica, 2001, 27(5): 393−400. doi: 10.3321/j.issn:1671-3877.2001.05.006
    [48] 李霞, 焦德茂, 戴传超. 转PEPC基因水稻对光氧化逆境的响应[J]. 作物学报, 2005, 31(4): 408−413. doi: 10.3321/j.issn:0496-3490.2005.04.002

    Li Xia, Jiao Demao, Dai Chuanchao. The response to photooxidation in leaves of PEPC transgenic rice plant (Oryza sativa L.)[J]. Acta Agronomica Sinica, 2005, 31(4): 408−413. doi: 10.3321/j.issn:0496-3490.2005.04.002
    [49] 周宝元. PEPC对水稻抗旱性的调节效果及其机理研究[D]. 北京: 中国农业科学院, 2011.

    Zhou Baoyuan. Effect of PEPC on rice drought resistance[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011.
    [50] Casati P, Lara M V, Andreo C S. Induction of a C4-like mechanism of CO2 fixation in Egeria densa, a submersed aquatic species[J]. Plant Physiology, 2000, 123(4): 1611−1622. doi: 10.1104/pp.123.4.1611
    [51] Rao S K, Magnin N C, Reiskind J B, et al. Photosynthetic and other phosphoenolpyruvate carboxylase isoforms in the single-cell, facultative C4 system of Hydrilla verticillata[J]. Plant Physiology, 2002, 130(2): 876−886. doi: 10.1104/pp.008045
    [52] 张忠梁. 不同作物光合特性比较及籽粒苋C4途径关键酶基因的原核表达[D]. 太原: 山西大学, 2013.

    Zhang Zhongliang. Study on photosynthetic characteristics of different plants and prokaryotic expression of C4 key enzyme genes in Amaranthus hypochondriacus L.[D]. Taiyuan: Shanxi University, 2013.
    [53] 王超, 李霞, 蔡庆生. 不同测定环境条件下转PEPC基因水稻及杂交后代光合特性的比较[J]. 江苏农业学报, 2008, 24(3): 232−236. doi: 10.3969/j.issn.1000-4440.2008.03.003

    Wang Chao, Li Xia, Cai Qingsheng. Comparison of photosynthetic characteristics of PEPC transgenic rice and its hybrid rice lines under field and lab conditions[J]. Jiangsu Journal of Agricultural Sciences, 2008, 24(3): 232−236. doi: 10.3969/j.issn.1000-4440.2008.03.003
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  178
  • HTML全文浏览量:  16
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-01
  • 修回日期:  2020-05-02
  • 网络出版日期:  2020-11-18
  • 刊出日期:  2020-08-25

目录

    /

    返回文章
    返回