Anthropogenic inputs of nutrients to coastal ecosystem and mitigation actions
-
摘要: 人为活动每年新增大量的活性氮、磷,导致全球氮、磷循环失衡,新增活性氮、磷主要来源于合成氮肥的生产和施用、畜肥的施用、具固氮能力的农作物如豆科植物等的大规模种植,以及化石燃料燃烧产生的氮氧化物等,而农作物生产与畜禽养殖是改变全球氮、磷循环的主要原因。随着生活污水排放量和化肥施用量的激增,大量氮、磷进入近海,导致营养盐污染和富营养化,这已成为全球性的海洋生态环境问题,通过河流径流和大气沉降进入近海生态环境中的新增氮和磷一半以上与人为活动有关。本文以波罗的海和东海为例,分析了发达国家和发展中国家近海的富营养化问题,研究表明从源头缓解富营养化的对策应同时聚焦氮与磷负荷的削减,具体措施包括降低农业生产活动中化肥的土壤渗漏、合理施肥、种植多年生植物和种植休耕季覆被作物等。Abstract: Currently, the global nitrogen and phosphorus cycles are out of balance due to anthropogenic activities which produce a large amount of reactive nitrogen and phosphorus annually. The incremental N and P are mainly derived from production and application of synthetic N fertilizers, manure application, large areas of cultivated leguminous crops that could fix atmospheric N2, and NOx emitted from fossil fuel combustion. It should be noted that crop and livestock production systems are the major cause of human alteration of the global N and P cycles. Increased human sewage and fertilizer application in agricultural production have significantly raised the inputs of N and P nutrients to coastal ecosystems leading to a global spread of eutrophication. Most of these inputs are transported to the coastal ocean via river runoff and atmospheric deposition. More than half of the incremental N and P loads are related to anthropogenic sources. The Baltic Sea and East China Sea present typical eutrophication condition in developed country and developing country respectively. The mitigation strategies should focus on dual nutrient strategy for successful N and P reduction, including reduction of leaching and runoff from agricultural fields, growing perennial crops, effective application of fertilizers, and planting winter cover crops.
-
表 1 地表水和地下水中氮、磷污染的削减措施及其效果[10]
Tab. 1 Relative effectiveness of some representative best management practices for reducing nitrogen and phosphorus pollution of surface and groundwater[10]
削减措施 磷削减效果 氮削减效果 农业生产 休耕季覆被作物种植 有效 很有效 免耕农业 很有效 无效 多年生植物种植 有效 很有效 河溪缓冲林带 有效 仅当根际拦截了地下水水流时有效 污水处理 传统化粪池系统 很有效 无效 化学沉淀深度处理污水处理厂 很有效 几乎无效 反硝化深度处理污水厂 有效 很有效 -
[1] 中国海洋可持续发展的生态环境问题与政策研究课题组. 中国海洋可持续发展的生态环境问题与政策研究[M]. 北京: 中国环境出版社, 2013.Task Force on Ecosystem Issues and Policy Options Addressing the Sustainable Development of China’s Ocean and Coast. Ecosystem Issues and Policy Options Addressing the Sustainable Development of China’s Ocean and Coast[M]. Beijing: China Environmental Science Press, 2013. [2] Watson A J. Oceans on the edge of anoxia[J]. Science, 2016, 354(6319): 1529−1530. doi: 10.1126/science.aaj2321 [3] Tarafdar J C, Claassen N. Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms[J]. Biology and Fertility of Soils, 1988, 5(4): 308−312. [4] Paerl H W. Controlling eutrophication along the freshwater–marine continuum: dual nutrient (N and P) reductions are essential[J]. Estuaries and Coasts, 2009, 32(4): 593−601. [5] Breitburg D, Levin L A, Oschlies A, et al. Declining oxygen in the global ocean and coastal waters[J]. Science, 2018, 359(6371): eaam7240. [6] Voss M, Bange H W, Dippner J W, et al. The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1621): 20130121. doi: 10.1098/rstb.2013.0121 [7] Beusen A H W, Bouwman A F, van Beek L P H, et al. Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum[J]. Biogeosciences, 2016, 13: 2441−2451. [8] Seitzinger S P, Mayorga E. Nutrient inputs from river systems to coastal waters[M]//IOC-UNESCO and UNEP. Transboundary Waters Assessment Programme, Global Environment Facility, Large Marine Ecosystems: Status and Trends. Nairobi: United Nations Environment Programme, 2016: 179−195. [9] Jickells T D, Buitenhuis E, Altieri K, et al. A reevaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean[J]. Global Biogeochemical Cycles, 2017, 31(2): 289−305. [10] Ngatia L, Grace J M Ⅲ, Moriasi D, et al. Nitrogen and Phosphorus Eutrophication in Marine Ecosystems[M]. Florida: IntechOpen, 2019. [11] Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70(2): 153−226. [12] Green P A, Vörösmarty C J, Meybeck M, et al. Pre-industrial and contemporary fluxes of nitrogen through rivers: a global assessment based on typology[J]. Biogeochemistry, 2004, 68(1): 71−105. doi: 10.1023/B:BIOG.0000025742.82155.92 [13] Haygarth P M, Condron L M, Heathwaite A L, et al. The phosphorus transfer continuum: linking source to impact with an interdisciplinary and multi-scaled approach[J]. Science of the Total Environment, 2005, 344(1/3): 5−14. [14] Peñuelas J, Poulter B, Sardans J, et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe[J]. Nature Communications, 2013, 4(1): 2934. [15] Lu Chaoqun, Tian Hanqin. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance[J]. Earth System Science Data, 2017, 9(1): 181−192. [16] Galloway J N, Cowling E B. Reactive nitrogen and the world: 200 years of change[J]. AMBIO: A Journal of the Human Environment, 2002, 31(2): 64−71. [17] Vitousek P M, Aber J D, Howarth R W, et al. Human alteration of the global nitrogen cycle: sources and consequences[J]. Ecological Applications, 1997, 7(3): 737−750. [18] Bouwman L, Goldewijk K K, van der Hoek K W, et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(52): 20882−20887. doi: 10.1073/pnas.1012878108 [19] Zhang Bowen, Tian Hanqin, Lu Chaoqun, et al. Global manure nitrogen production and application in cropland during 1860−2014: a 5 arcmin gridded global dataset for earth system modeling[J]. Earth System Science Data, 2017, 9(2): 667−678. [20] Lamsal L N, Martin R V, Padmanabhan A, et al. Application of satellite observations for timely updates to global anthropogenic NOx emission inventories[J]. Geophysical Research Letters, 2011, 38(5): L05810. [21] Barceló D, Kostianoy A. The Handbook of Environmental Chemistry[M]. Berlin, Heidelberg: Springer, 2005. [22] Boyer E W, Howarth R W. Nitrogen fluxes from rivers to the coastal oceans[M]//Nitrogen in the Marine Environment. 2nd ed. San Diego: Academic Press, 2008: 1565-1587. [23] World Water Assessment Programme (UN). World Water Development Report 2017, Wastewater: The Untapped Resource[M]. Paris: United Nations Educational, Scientific and Cultural Organization, 2017. [24] van Drecht G, Bouwman A F, Harrison J, et al. Global nitrogen and phosphate in urban wastewater for the period 1970 to 2050[J]. Global Biogeochemical Cycles, 2009, 23(4): GB0A03. [25] Selman M, Greenhalgh S. Eutrophication: sources and drivers of nutrient pollution[J]. Renewable Resources Journal, 2010, 26(4): 19−26. [26] Howarth R W, Boyer E W, Pabich W J, et al. Nitrogen use in the United States from 1961-2000 and potential future trends[J]. AMBIO: A Journal of the Human Environment, 2002, 31(2): 88−96. doi: 10.1579/0044-7447-31.2.88 [27] Howarth R W, Billen G, Swaney D, et al. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: natural and human influences[J]. Biogeochemistry, 1996, 35(1): 75−139. [28] Randall G W, Mulla D J. Nitrate nitrogen in surface waters as influenced by climatic conditions and agricultural practices[J]. Journal of Environmental Quality, 2001, 30(2): 337−344. [29] Howarth R W. Coastal nitrogen pollution: a review of sources and trends globally and regionally[J]. Harmful Algae, 2008, 8(1): 14−20. doi: 10.1016/j.hal.2008.08.015 [30] Howarth R W, Marino R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades[J]. Limnology and Oceanography, 2006, 51: 364−376. [31] Valigura R A, Alexander R B, Castro M S, et al. Nitrogen Loading in Coastal Water Bodies: An Atmospheric Perspective[M]. Washington, D.C.: American Geophysical Union, 2001. [32] Dentener F, Drevet J, Lamarque J F, et al. Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation[J]. Global Biogeochemical Cycles, 2006, 20(4): GB4003. [33] Duce R A, LaRoche J, Altieri K R, et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean[J]. Science, 2008, 320(5878): 893−897. [34] Seitzinger S P, Mayorga E, Bouwman A F, et al. Global river nutrient export: a scenario analysis of past and future trends[J]. Global Biogeochemical Cycles, 2010, 24(4): GB0A08. [35] Keeling R F, Körtzinger A, Gruber N. Ocean deoxygenation in a warming world[J]. Annual Review of Marine Science, 2010, 2(1): 199−229. doi: 10.1146/annurev.marine.010908.163855 [36] Paerl H W, Dennis R L, Whitall D R. Atmospheric deposition of nitrogen: implications for nutrient over-enrichment of coastal waters[J]. Estuaries, 2002, 25(4): 677−693. doi: 10.1007/BF02804899 [37] Carpenter S R. Eutrophication of aquatic ecosystems: bistability and soil phosphorus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(29): 10002−10005. doi: 10.1073/pnas.0503959102 [38] Bennett E M, Carpenter S R, Caraco N F. Human impact on erodable phosphorus and eutrophication: a global perspective: increasing accumulation of phosphorus in soil threatens rivers, lakes, and coastal oceans with eutrophication[J]. BioScience, 2001, 51(3): 227−234. doi: 10.1641/0006-3568(2001)051[0227:HIOEPA]2.0.CO;2 [39] 王菊英, 韩庚辰, 张志锋. 国际海洋环境监测与评价最新进展[M]. 北京: 海洋出版社, 2010.Wang Juying, Han Gengchen, Zhang Zhifeng. Progress on International Marine Environmental Monitoring and Assessment[M]. Beijing: China Ocean Press, 2010. [40] Carstensen J, Andersen J H, Gustafsson B G, et al. Deoxygenation of the Baltic Sea during the last century[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(15): 5628−5633. [41] Boesch D F. Barriers and bridges in abating coastal eutrophication[J]. Frontiers in Marine Science, 2019, 6(123): 1−25. [42] Sonesten L, Frank-Kamenetsky D, Gustafsson B, et al. The sixth pollution load compilation (PLC-6)[Z]. 2019. [43] Sonesten L, Svendsen L M, Tornbjerg H, et al. Sources and pathways of nutrients to the Baltic Sea: HELCOM PLC-6[M]. Helsinki, Finland: Helsinki Commission, 2018. [44] Limburg K E, Casini M. Effect of marine hypoxia on Baltic Sea Cod Gadus morhua: evidence from otolith chemical proxies[J]. Frontiers in Marine Science, 2018, 5: 482. doi: 10.3389/fmars.2018.00482 [45] Schmale O, Krause S, Holtermann P, et al. Dense bottom gravity currents and their impact on pelagic methanotrophy at oxic/anoxic transition zones[J]. Geophysical Research Letters, 2016, 43(10): 5225−5232. [46] Cloern J E, Abreu P C, Carstensen J, et al. Human activities and climate variability drive fast-paced change across the world's estuarine–coastal ecosystems[J]. Global Change Biology, 2016, 22(2): 513−529. doi: 10.1111/gcb.13059 [47] Yuan Jinchun, Hayden L, Dagg M. Comment on "Reduction of primary production and changing of nutrient ratio in the East China Sea: effect of the Three Gorges Dam?" by Gwo-Ching Gong et al.[J]. Geophysical Research Letters, 2007, 34(14): L14609. doi: 10.1029/2006GL029036 [48] Tong Yindong, Zhao Yue, Zhen Gengchong, et al. Nutrient loads flowing into coastal waters from the main rivers of China (2006−2012)[J]. Scientific Reports, 2015, 5: 16678. [49] Yan Weijin, Zhang Shen, Sun Pu, et al. How do nitrogen inputs to the Changjiang basin impact the Changjiang River nitrate: a temporal analysis for 1968−1997[J]. Global Biogeochemical Cycles, 2003, 17(4): 1091. [50] Zhou Mingjiang, Shen Zhiliang, Yu Rencheng. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang River[M]//Shen Z. Studies of the Biogeochemistry of Typical Estuaries and Bays in China. Berlin, Heidelberg: Springer, 2020: 159−173. [51] Chen C, Gong G, Shiah F. Hypoxia in the East China Sea: one of the largest coastal low-oxygen areas in the world[J]. Marine Environmental Research, 2007, 64(4): 399−408. doi: 10.1016/j.marenvres.2007.01.007 [52] Zhu Zhuoyi, Wu Hui, Liu Sumei, et al. Hypoxia off the Changjiang (Yangtze River) estuary and in the adjacent East China Sea: quantitative approaches to estimating the tidal impact and nutrient regeneration[J]. Marine Pollution Bulletin, 2017, 125(1/2): 103−114. [53] Wang Yunfeng, Yu Rencheng, Lu Douding, et al. Recurrent toxic blooms of Alexandrium spp. in the East China Sea-potential role of Taiwan warm current in bloom initiation[J]. Journal of Ecology and Toxicology, 2018, 2(2): 115. [54] Howarth R W. The development of policy approaches for reducing nitrogen pollution to coastal waters of the USA[J]. Science in China Series C: Life Sciences, 2005, 48(2): 791−806. [55] Howarth R W, Sharpley A, Walker D. Sources of nutrient pollution to coastal waters in the United States: implications for achieving coastal water quality goals[J]. Estuaries, 2002, 25(4): 656−676. [56] Boesch D F, Brinsfield R B, Magnien R E. Chesapeake bay eutrophication: scientific understanding, ecosystem restoration, and challenges for agriculture[J]. Journal of Environmental Quality, 2001, 30(2): 303−320. [57] Staver K W, Brinsfield R B. Using cereal grain winter cover crops to reduce groundwater nitrate contamination in the mid-Atlantic coastal plain[J]. Journal of Soil and Water Conservation, 1998, 53(3): 230−240. [58] Schoumans O F, Chardon W J, Bechmann M E, et al. Mitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality: a review[J]. Science of the Total Environment, 2014, 468−469: 1255−1266. doi: 10.1016/j.scitotenv.2013.08.061 -