留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于气温的浮冰侧向融化速率参数化方案实验研究

艾润冰 谢涛 刘彬贤 赵立 方贺

艾润冰,谢涛,刘彬贤,等. 基于气温的浮冰侧向融化速率参数化方案实验研究[J]. 海洋学报,2020,42(5):150–158,doi:10.3969/j.issn.0253−4193.2020.05.014
引用本文: 艾润冰,谢涛,刘彬贤,等. 基于气温的浮冰侧向融化速率参数化方案实验研究[J]. 海洋学报,2020,42(5):150–158,doi:10.3969/j.issn.0253− 4193.2020.05.014
Ai Runbing,Xie Tao,Liu Binxian, et al. An experimental study on parametric scheme of lateral melting rate of ice layer based on temperature[J]. Haiyang Xuebao,2020, 42(5):150–158,doi:10.3969/j.issn.0253−4193.2020.05.014
Citation: Ai Runbing,Xie Tao,Liu Binxian, et al. An experimental study on parametric scheme of lateral melting rate of ice layer based on temperature[J]. Haiyang Xuebao,2020, 42(5):150–158,doi:10.3969/j.issn.0253−4193.2020.05.014

基于气温的浮冰侧向融化速率参数化方案实验研究

doi: 10.3969/j.issn.0253-4193.2020.05.014
基金项目: 全球变化研究国家重大科学研究计划(2015CB953901);国家自然科学基金(41776181,41675046);国家重点研发计划(2018YFC1506404)。
详细信息
    作者简介:

    艾润冰(1995-),女,河南省许昌市人,主要从事海冰侧向融化过程研究。E-mail:20171204303@nuist.edu.cn

    通讯作者:

    谢涛,教授,主要从事海洋遥感研究。E-mail:xietao@nuist.edu.cn

  • 中图分类号: P731.15

An experimental study on parametric scheme of lateral melting rate of ice layer based on temperature

  • 摘要: 为定量探究影响冰层侧向融化的主导因素,并简化冰层侧向融化速率参数化方案,在实验室模拟了无风、静水、无辐射、纯热力学条件下纯水冰的融化过程,测量了冰层的侧向融化量,并记录了融化期间实验室气温、冰面皮温、水温及冰温等要素。观测结果表明,无辐射纯热力学条件下冰层侧向融化整体较均匀,侧向上层和下层融化速率相对中间层较快;相关性分析结果表明,气温与水温、冰温、冰面皮温之间都有很好的线性相关;信息流结果表明,气温是影响冰层侧向融化的最主要因素;最后通过拟合建立了用气温表征冰层侧向融化速率的参数化方案,并与前人的方案进行了比较,结果显示本文参数化方案模拟效果较好,所得标准偏差最小,为0.08 mm/h,达到了简化参数的目的。
  • 图  1  实验室装置系统示意图

    Fig.  1  The schematic of laboratory equipment system

    图  2  侧向融化测量装置示意图

    Fig.  2  The schematic of lateral melting measuring device

    图  3  融化期间观测的气温、水温及冰温

    Fig.  3  Observing air temperature, water temperature and ice temperature during melting

    图  4  实验期间冰侧向融化剖面

    Fig.  4  The lateral melting profile of ice during the experiment

    图  5  气温与水温、水冰温差及冰面皮温之间的相关性

    Fig.  5  The correlation between air temperature and water temperature, water-ice temperature difference and ice skin temperature

    图  6  −8 cm处侧向融化速率与气温拟合

    Fig.  6  The fitting diagram of lateral melting rate at −8 cm and air temperature

    图  7  各参数化方案模拟结果与实测数据对比

    Fig.  7  The comparison of simulation results and measured data of each parameterization scheme

    表  1  气温与水温及水冰温差之间的拟合优度R2

    Tab.  1  The goodness of fit R2 between air temperature and water temperature, water-ice temperature difference

    –2 cm–3 cm–4 cm–5 cm–6 cm–7 cm–8 cm–9 cm–10 cm–11 cm
    气温–水温0.960.720.920.740.770.820.870.910.910.91
    气温–水冰温差0.520.720.850.640.700.740.800.860.800.81
    –12 cm–13 cm–14 cm–15 cm–16 cm–17 cm–18 cm–19 cm–20 cm
    气温–水温0.910.910.900.900.900.900.890.890.89
    气温–水冰温差0.820.810.800.860.870.860.820.850.85
    下载: 导出CSV

    表  2  各影响因素与侧向融化速率之间的信息流

    Tab.  2  Information flow between each influencing factor and the rate of lateral melting

    深度/cm信息传递方向
    TaMrMrTaTwMrMrTwTsMrMrTsTMrMr→∆T
    00.0170.0040.029–0.004
    –1–0.004–0.0020.003–0.001
    –2–0.004–0.002–0.041–0.0360.0010.000–0.041–0.036
    –30.1230.0150.007–0.0120.1090.0320.005–0.010
    –40.2040.0290.0070.0070.1850.0530.0000.000
    –50.2590.0990.2960.0430.2910.0260.3030.053
    –60.446–0.1330.3110.0190.372–0.0700.3110.034
    –70.589–0.0650.4740.0520.570–0.0230.4470.066
    –80.557–0.0120.4630.0980.4890.0290.4730.120
    –90.4530.0680.3930.0510.4430.0230.4210.079
    –100.545–0.1090.355–0.0050.524–0.0920.2500.198
    –110.4350.0490.3130.1050.3930.0290.2870.224
    –120.502–0.1740.332–0.0320.416–0.0510.2460.101
    –130.435–0.1580.300–0.0090.348–0.0730.2380.118
    –140.4000.0920.3540.0910.3950.0290.3210.135
    –150.315–0.0060.3050.0380.3160.0090.3320.050
    –160.1830.0790.1010.0990.2100.0760.1260.092
    –170.3720.1180.3270.1150.3510.0470.3260.125
    –180.3590.0750.2910.0720.3300.0260.3100.070
    –190.244–0.0510.1380.1070.232–0.0140.1190.170
    –200.2300.0070.1670.0590.1770.0260.1920.096
    –210.281–0.0700.222–0.002
    –220.1400.0020.1060.001
    –230.1290.0110.1020.000
    –240.171–0.0700.126–0.065
    –250.161–0.0190.124–0.036
    –260.092–0.0150.067–0.022
      注:Mr表示侧向融化速率,Ta表示气温,Ts表示冰面皮温,Tw表示对应层水温,∆T表示对应层水冰温差,–表示水温数据缺失。
    下载: 导出CSV

    表  3  各参数化方案模拟结果与实测数据标准偏差

    Tab.  3  The standard deviation between simulation results and measured data of each parameterization scheme

    参数化方案Josberger和
    Martin[13]
    Maykut和
    Perovich[14]–风速1 m/s
    Maykut和
    Perovich[14]–风速0.5 m/s
    Maykut和
    Perovich[14]–风速0.1 m/s
    Maykut和
    Perovich[14]–风速0.01 m/s
    Steele[15]本文
    标准偏差/mm·h–10.110.130.080.110.130.120.08
    下载: 导出CSV
  • [1] Haas C, Pfaffling A, Hendricks S, et al. Reduced ice thickness in Arctic Transpolar Drift favors rapid ice retreat[J]. Geophysical Research Letters, 2008, 35(17): L17501. doi: 10.1029/2008GL034457
    [2] Comiso J C, Parkinson C L, Gersten R, et al. Accelerated decline in the Arctic sea ice cover[J]. Geophysical Research Letters, 2008, 35(1): L01703.
    [3] Comiso J C. Large decadal decline of the arctic multiyear ice cover[J]. Journal of Climate, 2012, 25(4): 1176−1193. doi: 10.1175/JCLI-D-11-00113.1
    [4] 柯长青, 彭海涛, 孙波, 等. 2002年−2011年北极海冰时空变化分析[J]. 遥感学报, 2013, 17(2): 459−466.

    Ke Changqing, Peng Haitao, Sun Bo, et al. Spatio-temporal variability of Arctic sea ice from 2002 to 2011[J]. Journal of Remote Sensing, 2013, 17(2): 459−466.
    [5] Comiso J C, Meier W N, Gersten R. Variability and trends in the Arctic Sea ice cover: Results from different techniques[J]. Journal of Geophysical Research, 2017, 122(8): 6883−6900.
    [6] 柯长青, 王蔓蔓. 基于CryoSat-2数据的2010-2017年北极海冰厚度和体积的季节与年际变化特征[J]. 海洋学报, 2018, 40(11): 1−13.

    Ke Changqing, Wang Manman. Seasonal and interannual variation of thinkness and volume of the Arctic sea ice based on CryoSat-2 during 2010-2017[J]. Haiyang Xuebao, 2018, 40(11): 1−13.
    [7] Lu P, Li Z J, Cheng B, et al. Sea ice surface features in Arctic summer 2008: aerial observations[J]. Remote Sensing of Environment, 2010, 114(4): 693−699. doi: 10.1016/j.rse.2009.11.009
    [8] 王庆元, 李清泉, 王兰宁. 侧边界融化对北极海冰影响的数值模拟[J]. 极地研究, 2013, 25(1): 84−89.

    Wang Qingyuan, Li Qingquan, Wang Lanning. Numerical simulations of the effects of lateral melting on Arctic sea ice[J]. Chinese Journal of Polar Research, 2013, 25(1): 84−89.
    [9] 张岩, 李畅游, 史小红, 等. 乌梁素海湖泊冰消融过程的现场观测[J]. 海洋湖沼通报, 2016, 36(4): 38−42.

    Zhang Yan, Li Changyou, Shi Xiaohong, et al. Field observation of ice melting process in Wuliangsuhai Lake[J]. Transactions of Oceanology and Limnology, 2016, 36(4): 38−42.
    [10] 肖建民, 金龙海, 谢永刚, 等. 寒区水库冰盖形成与消融机理分析[J]. 水利学报, 2004, 35(6): 80−85. doi: 10.3321/j.issn:0559-9350.2004.06.014

    Xiao Jianmin, Jin Longhai, Xie Yonggang, et al. Study on mechanism of formation and melting of reservoir ice cover in cold area[J]. Journal of Hydraulic Engineering, 2004, 35(6): 80−85. doi: 10.3321/j.issn:0559-9350.2004.06.014
    [11] 练继建, 赵新. 静动水冰厚生长消融全过程的辐射冰冻度−日法预测研究[J]. 水利学报, 2011, 42(11): 1261−1267.

    Lian Jijian, Zhao Xin. Radiation degree-day method for predicting the development of ice cover thickness under the hydrostatic and non-hydrostatic conditions[J]. Journal of Hydraulic Engineering, 2011, 42(11): 1261−1267.
    [12] 王庆凯, 李志军, 曹晓卫, 等. 实测冰−水侧向界面热力学融化速率[J]. 南水北调与水利科技, 2016, 14(6): 81−86.

    Wang Qingkai, Li Zhijun, Cao Xiaowei, et al. Analysis of measured thermodynamic melting rate of lateral interface between ice and water[J]. South-to-North Water Transfers and Water Science & Technology, 2016, 14(6): 81−86.
    [13] Josberger E G, Martin S. A laboratory and theoretical study of the boundary layer adjacent to a vertical melting ice wall in salt water[J]. Journal of Fluid Mechanics, 1981, 111: 439−473. doi: 10.1017/S0022112081002450
    [14] Maykut G A, Perovich D K. The role of shortwave radiation in the summer decay of a sea ice cover[J]. Journal of Geophysical Research: Oceans, 1987, 92(C7): 7032−7044. doi: 10.1029/JC092iC07p07032
    [15] Steele M. Sea ice melting and floe geometry in a simple ice-ocean model[J]. Journal of Geophysical Research: Oceans, 1992, 97(C11): 17729−17738. doi: 10.1029/92JC01755
    [16] Perovich D, Richter-Menge J A. From points to Poles: extrapolating point measurements of sea-ice mass balance[J]. Annals of Glaciology, 2006, 44: 188−192. doi: 10.3189/172756406781811204
    [17] Lei R, Li Z, Cheng Y, et al. A new apparatus for monitoring sea ice thickness based on the magnetostrictive-delay-line principle[J]. Journal of Atmospheric & Oceanic Technology, 2009, 26(4): 818−827.
    [18] 雷瑞波, 李志军, 程斌, 等. 夏季北冰洋浮冰−水道热力学特征现场观测研究[J]. 极地研究, 2010, 22(3): 286−295.

    Lei Ruibo, Li Zhijun, Cheng Bin, et al. Observations on the thermodynamic balance between floe and lead in the Arctic Ocean during summer[J]. Chinese Journal of Polar Research, 2010, 22(3): 286−295.
    [19] 王庆凯, 方贺, 李志军, 等. 湖冰侧、底部融化现场观测与热力学分析[J]. 水利学报, 2018, 49(10): 1207−1215.

    Wang Qingkai, Fang He, Li Zhijun, et al. Field investigations on lateral and bottom melting of lake ice and thermodynamic analysis[J]. Journal of Hydraulic Engineering, 2018, 49(10): 1207−1215.
    [20] Liang X S. Unraveling the cause-effect relation between time series[J]. Physical Review E, 2014, 90(5): 052150. doi: 10.1103/PhysRevE.90.052150
    [21] Liang X S. Information flow and causality as rigorous notions ab initio[J]. Physical Review E, 2015, 94(5): 052201.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  256
  • HTML全文浏览量:  65
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-03
  • 修回日期:  2019-06-07
  • 网络出版日期:  2020-11-18
  • 刊出日期:  2020-05-25

目录

    /

    返回文章
    返回