留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海底砂土中气体运移过程电阻率监测探针设计与实验

孙翔 郭秀军 吴景鑫

孙翔,郭秀军,吴景鑫. 海底砂土中气体运移过程电阻率监测探针设计与实验[J]. 海洋学报,2020,42(5):139–149,doi:10.3969/j.issn.0253−4193.2020.05.013
引用本文: 孙翔,郭秀军,吴景鑫. 海底砂土中气体运移过程电阻率监测探针设计与实验[J]. 海洋学报,2020,42(5):139–149,doi:10.3969/j.issn.0253− 4193.2020.05.013
Sun Xiang,Guo Xiujun,Wu Jingxin. Design and experiment of resistivity monitoring probe for gas migration in marine sand[J]. Haiyang Xuebao,2020, 42(5):139–149,doi:10.3969/j.issn.0253−4193.2020.05.013
Citation: Sun Xiang,Guo Xiujun,Wu Jingxin. Design and experiment of resistivity monitoring probe for gas migration in marine sand[J]. Haiyang Xuebao,2020, 42(5):139–149,doi:10.3969/j.issn.0253−4193.2020.05.013

海底砂土中气体运移过程电阻率监测探针设计与实验

doi: 10.3969/j.issn.0253-4193.2020.05.013
基金项目: 国家自然科学基金(41772307);国家重点研发项目(2017YFC0307701);国家自然科学基金重大科研仪器研制项目(41427803)。
详细信息
    作者简介:

    孙翔(1994-),男,山东省烟台市人,主要从事浅层气监测技术研究。E-mail:luyi24034@163.com

    通讯作者:

    郭秀军(1972-),男,教授,主要从事海洋地质环境监测技术方面的研究。E-mail:guojunqd@ouc.edu.cn

  • 中图分类号: P631.3+22

Design and experiment of resistivity monitoring probe for gas migration in marine sand

  • 摘要: 在浮力和动、静压力作用下,海底浅层气会在高渗透性土中发生垂直和水平方向的运移、聚集,诱发地层变形,甚至失稳破坏。为探索一种新型的气体运移过程原位监测技术,实现气致灾害实时监测预警,根据静电场测量原理,设计、制作了点状电极和环状电极两种形式电阻率探针。在分析了两种探针探测精度基础上,以砂土中气体扩散过程监测为例,利用其对3种速率气体运移过程进行连续监测实验。实验结果表明,两种探针电阻率测量误差均小于0.1%。点状电极探针测量灵敏度较高,可准确监测布设点含气量的变化、气体汇聚、消散过程及相应速率;环状电极探针测量灵敏度相对较低,但可监测气体在砂土中的时空运移过程。两种探针各有利弊,都可实现气体运移过程的有效监测。
  • 图  1  两种探针设计及实物图

    Fig.  1  Two kinds of probe designs and physical maps

    图  2  两种探针对纯水(a)和标准砂(b)电阻率测试结果

    Fig.  2  Test results of two kinds of probes on pure water (a) and standard sand (b)

    图  3  室内实验模型设计

    Fig.  3  Laboratory experiment model design

    图  4  3种速率注气过程两种阵列点状电极探针实测电阻率变化比

    Fig.  4  The measured resistivity change ratio of two array point-shaped electrode probes at three rate injecting process

    图  5  两种速率注气过程环状电极探针实测电阻率变化比

    Fig.  5  Measured resistivity change ratio of ring-shaped electrode probe during two rate injection

    图  6  不同注气过程点状电极探针实测含气饱和度变化

    Fig.  6  Gas saturation analysis of point-shaped electrode probes in different gas injection processes

    图  7  点状电极探针监测点气体扩散和消散过程趋势线

    Fig.  7  Gas diffusion and dissipation process trend line at the monitoring point of the point-shaped electrode probe

    图  8  注气速率对电阻率影响分析

    Fig.  8  Influences of gas injection rate on resistance rate

    图  9  气体空间运移模式

    Fig.  9  Pattern diagram of gas space migration

    图  10  对称位置两种探针探测电阻率变化比比较

    Fig.  10  Comparison of the resistivity ratios of two probes detecting at symmetrical positions

    A1  两种电阻率探针纯水中电阻率测试数据

    A1  Resistivity data of two resistivity probes tested in the pure water

    测试次数纯水电阻率/Ω·m环状探针A,B,C,D电极/Ω·m波动率/%点状探针阵列1/Ω·m波动率/%点状探针阵列2/Ω·m波动率/%
    18.888 98.895 110.069 8628.885 62−0.036 98.894 390.061 762
    28.888 98.878 51−0.116 8908.890 880.022 2758.884 84−0.045 67
    38.888 98.890 840.021 8258.892 570.041 2878.895 030.068 962
    48.888 98.889 290.004 3878.896 440.084 8258.889 730.009 337
    58.888 98.888 18−0.008 1008.890 170.014 2878.885 37−0.039 71
    68.888 98.879 61−0.104 518.891 150.025 3128.886 36−0.028 57
    78.888 98.879 32−0.107 778.885 55−0.037 698.889 630.008 212
    88.888 98.884 79−0.046 248.887 04−0.020 928.884 97−0.044 21
    98.888 98.879 90−0.101 258.892 680.042 5258.885 14−0.042 3
    108.888 98.893 010.046 2378.892 70.042 758.887 33−0.017 66
    118.888 98.896 300.083 258.890 120.013 7258.883 35−0.062 44
    128.888 98.880 11−0.098 898.893 630.053 2128.891 660.031 05
    138.888 98.885 43−0.039 048.894 550.063 5628.884 27−0.052 09
    148.888 98.890 790.021 2628.894 320.060 9758.888 81−0.001 01
    158.888 98.891 260.026 558.888 77−0.001 468.884 34−0.051 3
    168.888 98.892 630.041 9628.887 87−0.011 598.883 9−0.056 25
    178.888 98.891 400.028 1258.891 070.024 4128.889 20.003 375
    188.888 98.894 820.066 68.891 860.033 38.887 32−0.017 77
    198.888 98.897 990.102 2628.891 860.033 38.889 860.010 8
    208.888 98.891 120.024 9758.891 780.032 48.881 46−0.083 7
    218.888 98.893 090.047 1378.891 730.031 8378.885 72−0.035 77
    228.888 98.892 340.038 78.883 76−0.057 828.884 08−0.054 22
    238.888 98.895 340.072 458.888 46−0.004 958.886 22−0.030 15
    248.888 98.896 960.090 6758.878 94−0.112 058.884 48−0.049 72
    258.888 98.888 83−0.000 798.879 12−0.110 028.889 150.002 812
    268.888 98.898 370.106 5378.891 030.023 9628.891 230.026 212
    278.888 98.890 950.023 0628.895 340.072 458.895 470.073 912
    288.888 98.892 840.044 3258.879 45−0.106 318.894 230.059 962
    298.888 98.895 530.074 5878.880 16−0.098 328.895 350.072 562
    308.888 98.894 480.062 7758.885 76−0.035 328.884 89−0.045 11
    318.888 98.892 020.035 18.881 34−0.085 058.890 10.013 5
    328.888 98.894 480.062 7758.885 79−0.034 998.885 87−0.034 09
    338.888 98.896 390.084 2628.896 460.085 058.890 590.019 012
    348.888 98.892 400.039 3758.888 21−0.007 768.889 080.002 025
    358.888 98.893 890.056 1378.888 79−0.001 248.893 560.052 425
    368.888 98.889 940.011 78.882 17−0.075 718.885 65−0.036 56
    378.888 98.892 710.042 8628.891 010.023 7378.887 65−0.014 06
    388.888 98.893 060.046 88.892 620.041 858.891 070.024 412
    398.888 98.891 350.027 5628.890 990.023 5128.897 520.096 975
    408.888 98.890 650.019 6878.894 720.065 4758.883 81−0.057 26
    下载: 导出CSV

    A2  两种电阻率探针砂土中电阻率测试数据

    A2  Resistivity data of two resistivity probes tested in the sand

    测试次数砂土电阻率/Ω·m环状探针A,B, C,D电极/Ω·m波动率/%点状探针阵列1/Ω·m波动率/%点状探针阵列2/Ω·m波动率/%
    129.778 2729.807 560.098 36429.765 2−0.043 8929.797 470.064 48
    229.778 2729.810 240.107 36429.801 570.078 24829.753 78−0.082 24
    329.778 2729.812 050.113 44229.805 240.090 57329.793 930.052 592
    429.778 2729.768 55−0.032 6429.789 420.037 44729.794 340.053 969
    529.778 2729.749 71−0.095 9129.761 72−0.055 5729.798 360.067 469
    629.778 2729.758 96−0.064 8429.769 11−0.030 7629.795 870.059 107
    729.778 2729.766 86−0.038 3129.760 62−0.059 2729.766−0.041 2
    829.778 2729.770 1−0.027 4329.802 570.081 60629.801 290.077 308
    929.778 2729.795 120.056 58829.801 890.079 32329.801 210.077 039
    1029.778 2729.807 980.099 77429.809 190.103 83729.771 8−0.021 72
    1129.778 2729.811 910.112 97229.761 58−0.056 0429.803 390.084 36
    1229.778 2729.755 13−0.077 729.757 35−0.070 2529.760 84−0.058 53
    1329.778 2729.780 890.008 80229.800 70.075 32729.754 8−0.078 81
    1429.778 2729.766 86−0.038 3129.807 130.096 9229.809 280.104 14
    1529.778 2729.761 1−0.057 6629.769 36−0.029 9229.761 21−0.057 29
    1629.778 2729.770 54−0.025 9629.753 77−0.082 2729.796 280.060 484
    1729.778 2729.766 47−0.039 6229.792 960.049 33529.800 220.073 715
    1829.778 2729.776 79−0.004 9729.801 820.079 08829.783 520.017 634
    1929.778 2729.762 28−0.053 6929.802 830.082 4829.788 510.034 391
    2029.778 2729.777 06−0.004 0629.760 27−0.060 4429.795 660.058 402
    2129.778 2729.807 650.098 66629.787 640.031 46929.769 53−0.029 35
    2229.778 2729.796 550.061 3929.800 220.073 71529.761 3−0.056 98
    2329.778 2729.762 29−0.053 6629.770 82−0.025 0129.787 420.030 73
    2429.778 2729.783 310.016 92829.761 43−0.056 5529.784 320.020 32
    2529.778 2729.801 530.078 11429.785 950.025 79429.779 390.003 764
    2629.778 2729.808 150.100 34529.790 940.042 55129.758 31−0.067 03
    2729.778 2729.803 570.084 96529.757 37−0.070 1829.768 21−0.033 78
    2829.778 2729.776 45−0.006 1129.802 880.082 64829.777 28−0.003 32
    2929.778 2729.779 850.005 30929.812 120.113 67729.761 23−0.057 22
    3029.778 2729.753 03−0.084 7629.794 210.053 53229.795 610.058 234
    3129.778 2729.785 550.024 45129.759 65−0.062 5329.788 530.034 458
    3229.778 2729.803 680.085 33429.779 720.004 87329.800 140.073 446
    3329.778 2729.781 560.011 05229.805 930.092 8929.764 92−0.044 83
    3429.778 2729.765 49−0.042 9129.805 550.091 61429.752 04−0.088 08
    3529.778 2729.776 46−0.006 0729.764 78−0.045 329.808 520.101 588
    3629.778 2729.786 530.027 74229.772 09−0.020 7529.794 730.055 279
    3729.778 2729.801 470.077 91329.784 530.021 02529.794 760.055 379
    3829.778 2729.806 650.095 30829.806 370.094 36729.787 050.029 488
    3929.778 2729.784 520.020 99229.760 28−0.060 4129.778 22−0.000 16
    4029.778 2729.802 450.081 20429.807 510.098 19629.760 18−0.060 75
    下载: 导出CSV
  • [1] 李萍, 杜军, 刘乐军, 等. 我国近海海底浅层气分布特征[J]. 中国地质灾害与防治学报, 2010, 21(1): 69−74. doi: 10.3969/j.issn.1003-8035.2010.01.015

    Li Ping, Du Jun, Liu Lejun, et al. Distribution characteristics of the shallow gas in Chinese offshore seabed[J]. The Chinese Journal of Geological Hazard and Control, 2010, 21(1): 69−74. doi: 10.3969/j.issn.1003-8035.2010.01.015
    [2] 顾兆峰, 张志珣, 刘怀山. 海底浅层圈闭与浅层气地震反射特征对比[J]. 海洋地质与第四纪地质, 2009, 29(3): 115−122.

    Gu Zhaofeng, Zhang Zhixun, Liu Huaishan. Contrast between traps at the shallow subbottom depth and the seismic reflection features of shallow gas[J]. Marine Geology & Quaternary Geology, 2009, 29(3): 115−122.
    [3] 傅宁, 林青, 刘英丽. 从南海北部浅层气的成因看水合物潜在的气源[J]. 现代地质, 2011, 25(2): 332−339. doi: 10.3969/j.issn.1000-8527.2011.02.017

    Fu Ning, Lin Qing, Liu Yingli. Analysis on potential gas source of gas hydrate from the original characteristics of shallow gas in the north of the South China Sea[J]. Geoscience, 2011, 25(2): 332−339. doi: 10.3969/j.issn.1000-8527.2011.02.017
    [4] 郭爱国, 孔令伟, 沈林冲, 等. 地铁建设中浅层气危害防治对策研究[J]. 岩土力学, 2013, 34(3): 769−775.

    Guo Aiguo, Kong Lingwei, Shen Linchong, et al. Study of disaster countermeasures of shallow gas in metro construction[J]. Rock and Soil Mechanics, 2013, 34(3): 769−775.
    [5] Langseth E, Landrø M. Time-lapse 2D interpretation of gas migration in shallow sand layers–Compared to reservoir simulation[J]. International Journal of Greenhouse Gas Control, 2012, 10: 389−396. doi: 10.1016/j.ijggc.2012.07.007
    [6] 颜景前. 煤层孔隙水中瓦斯运移规律研究[D]. 徐州: 中国矿业大学, 2016.

    Yan Jingqian. Research on gas migration in the fissure water of coal seam[D]. Xuzhou: China University of Mining and Technology, 2016.
    [7] 顾兆峰, 刘怀山, 张志珣. 浅层气逸出到海水中的气泡声学探测方法[J]. 海洋地质与第四纪地质, 2008, 28(2): 129−135.

    Gu Zhaofeng, Liu Huaishan, Zhang Zhixun. Acoustic detecting method for bubbles from shallow gas to sea water[J]. Marine Geology & Quaternary Geology, 2008, 28(2): 129−135.
    [8] Garcia-Gil S, Vilas F, Garcia-Garcia A. Shallow gas features in incised-valley fills (Ría de Vigo, NW Spain): a case study[J]. Continental Shelf Research, 2002, 22(16): 2303−2315. doi: 10.1016/S0278-4343(02)00057-2
    [9] 王艳秋. 浅层气场址工程处理方法探讨[J]. 科技资讯, 2017, 15(18): 71−72.

    Wang Yanqiu. Discussion on engineering treatment method of shallow gas field site[J]. Science & Technology Information, 2017, 15(18): 71−72.
    [10] Denchik N, Pezard P A, Neyens D, et al. Near-surface CO2 leak detection monitoring from downhole electrical resistivity at the CO2 Field Laboratory, Svelvik Ridge (Norway)[J]. International Journal of Greenhouse Gas Control, 2014, 28: 275−282. doi: 10.1016/j.ijggc.2014.06.033
    [11] Shiea M, Mostoufi N, Sotudeh-Gharebagh R. Comprehensive study of regime transitions throughout a bubble column using resistivity probe[J]. Chemical Engineering Science, 2013, 100: 15−22. doi: 10.1016/j.ces.2013.01.047
    [12] Rosenberger A, Weidelt P, Spindeldreher C, et al. Design and application of a new free fall in situ resistivity probe for marine deep water sediments[J]. Marine Geology, 1999, 160(3/4): 327−337.
    [13] 丁忠军. 海底沉积物电阻率原位探测技术及应用研究[D]. 青岛: 中国海洋大学, 2013.

    Ding Zhongjun. Seabed sediment resistivity in situ measurement technology and application research[D]. Qingdao: Ocean University of China, 2013.
    [14] 夏欣. 基于电阻率测量的海床蚀积过程原位监测技术研究[D]. 青岛: 中国海洋大学, 2009.

    Xia Xin. In-situ monitoring technology study of seabed erosion and depositon process based on resistivity method[D]. Qingdao: Ocean University of China, 2009.
    [15] Jia Yonggang, Li Honglei, Miangmei, et al. Deposition-monitoring technology in an estuarial environment using an electrical-resistivity method[J]. Journal of Coastal Research, 2012, 28(4): 860−867. doi: 10.2112/JCOASTRES-D-10-00176.1
    [16] Demuth D, Bumberger J, Paasche H. Evaluation of direct push probes: Sensor interface analysis of DC resistivity probes[J]. Journal of Applied Geophysics, 2015, 122: 218−225. doi: 10.1016/j.jappgeo.2015.07.013
    [17] Sobkowicz J C, Morgenstern N R. The undrained equilibrium behaviour of gassy sediments[J]. Canadian Geotechnical Journal, 1984, 21(3): 439−449. doi: 10.1139/t84-048
    [18] Won I. The geometrical factor of a marine resistivity probe with four ring electrodes[J]. IEEE Journal of Oceanic Engineering, 1987, 12(1): 301−303. doi: 10.1109/JOE.1987.1145234
    [19] Archie G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Well Logging Technology, 1946, 146(3): 54−62.
    [20] Breen S J, Carrigan C R, LaBrecque D J, et al. Bench-scale experiments to evaluate electrical resistivity tomography as a monitoring tool for geologic CO2 sequestration[J]. International Journal of Greenhouse Gas Control, 2012, 9: 484−494. doi: 10.1016/j.ijggc.2012.04.009
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  167
  • HTML全文浏览量:  28
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-25
  • 修回日期:  2019-07-25
  • 网络出版日期:  2020-11-18
  • 刊出日期:  2020-05-25

目录

    /

    返回文章
    返回