留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同形态海湾的水底平衡剖面研究

苏文亮 邹志利 张庆民

苏文亮,邹志利,张庆民. 不同形态海湾的水底平衡剖面研究[J]. 海洋学报,2020,42(5):128–138,doi:10.3969/j.issn.0253−4193.2020.05.012
引用本文: 苏文亮,邹志利,张庆民. 不同形态海湾的水底平衡剖面研究[J]. 海洋学报,2020,42(5):128–138,doi:10.3969/j.issn.0253−4193.2020.05.012
Su Wenliang,Zou Zhili,Zhang Qingmin. Equilibrium bottom profiles of different embayment configurations [J]. Haiyang Xuebao,2020, 42(5):128–138,doi:10.3969/j.issn.0253−4193.2020.05.012
Citation: Su Wenliang,Zou Zhili,Zhang Qingmin. Equilibrium bottom profiles of different embayment configurations [J]. Haiyang Xuebao,2020, 42(5):128–138,doi:10.3969/j.issn.0253−4193.2020.05.012

不同形态海湾的水底平衡剖面研究

doi: 10.3969/j.issn.0253-4193.2020.05.012
基金项目: 国家自然科学基金(51879033)。
详细信息
    作者简介:

    苏文亮(1990-),男,山东省德州市人,主要从事海湾动力地貌演变研究。E-mail:suwenliang@mail.dlut.edu.cn

    通讯作者:

    邹志利(1957-),男,黑龙省江伊春市人,教授,主要从事海岸水动力和海岸动力地貌研究。E-mail:zlzou@dlut.edu.cn

  • 中图分类号: P737.23

Equilibrium bottom profiles of different embayment configurations

  • 摘要: 研究海湾平衡剖面对理解海湾地貌演变具有重要意义。本文给出了收缩型、扩张型和矩形3种典型海湾平面形态对平衡剖面的影响。建立了海湾长度远小于潮汐波长的短尺度海湾的平衡剖面和对应的时均悬沙浓度的解析解。采用水深平均的水动力方程、泥沙输移方程和地形演变方程的耦合模型对以上3种类型海湾的平衡剖面进行了数值模拟,得到了这3种类型海湾的水面、流速、时均悬沙浓度和平衡剖面的计算结果,并利用水面数值结果确定了海湾水面解析解所含的一个待定常数。研究结果给出了3种不同海湾平面形态所对应的平衡剖面形态:矩形海湾对应斜坡型;收缩型海湾对应下凹型;扩张型海湾对应上凸型。所得海湾平衡剖面和时均悬沙浓度的解析解与数值解一致。
  • 图  1  坐标系(以扩张型海湾为例)

    Fig.  1  Coordinate system (divergent embayment)

    图  2  水面幅值${\eta _a}$、速度幅值${u_0}$、水底剖面h计算结果和水平一维模型的结果(Todeschini等[8])的对比

    Fig.  2  Comparison of the calculation results of surface elevation ${\eta _a}$, velocity amplitude ${u_0}$, bottom profile $h$ with horizontal one-dimensional model (Todeschini et al.[8])

    图  3  收缩型海湾地形几何形态(a)和初始地形(b)

    Fig.  3  Geometry(a) and initial terrain (b) of convergent embayment

    图  4  收缩型海湾速度幅值${u_0}$(a)、水面幅值${\eta _a}$空间分布和地形剖面h演变(b)

    Fig.  4  Distribution of velocity amplitude ${u_0}$(a), surface elevation ${\eta _a}$ and terrain profile evolution $h$(b) in convergent embayment

    图  5  收缩型海湾时均浓度差$ \left\langle {{C_*} - C} \right\rangle $和悬沙浓度$\left\langle C \right\rangle $的空间分布

    Fig.  5  Distribution of suspended sediment concentration $\left\langle C \right\rangle $ and difference $\left\langle {{C_*} - C} \right\rangle $ in convergent embayment

    图  6  收缩型海湾水面幅值${\eta _a}$、平衡剖面h数值结果和解析解结果对比

    Fig.  6  Comparison between numerical result and analytical result of surface elevation ${\eta _a}$ and equilibrium profile $h$ in convergent embayment

    图  7  扩张型海湾速度幅值${u_0}$ (a)、水面幅值${\eta _a}$空间分布和地形剖面h演变(b)

    Fig.  7  Distribution of velocity amplitude ${u_0}$ (a), surface elevation ${\eta _a}$ and terrain profile evolution $h$ (b) in divergent embayment

    图  8  扩张型海湾时均浓度差$\left\langle {{C_*} - C} \right\rangle $和悬沙浓度$\left\langle C \right\rangle $的空间分布

    Fig.  8  Distribution of suspended sediment concentration $\left\langle C \right\rangle $ and difference $\left\langle {{C_*} - C} \right\rangle $ in divergent embayment

    图  9  扩张型海湾水面幅值${\eta _a}$、平衡剖面h数值结果和解析解结果对比

    Fig.  9  Comparison between numerical result and analytical result of surface elevation ${\eta _a}$ and equilibrium profile $h$ in divergent embayment

    图  10  取水底地形为理论解(15)时速度幅值${u_0}$分布及其与数值计算的速度分布的对比

    Fig.  10  Distribution of velocity amplitude ${u_0}$ correspond to analytical solution(15)

    图  11  矩形海湾速度幅值${u_0}$分布(a)、水面幅值${\eta _a}$和地形剖面h演变(b)

    Fig.  11  Distribution of velocity amplitude ${u_0}$ (a), surface elevation ${\eta _a}$ and terrain profile evolution $h$ (b) in rectangular embayment

    图  12  矩形海湾水面幅值${\eta _a}$、平衡剖面h数值结果和解析解结果

    Fig.  12  Numerical result and analytical result of surface elevation ${\eta _a}$ and equilibrium profile $h$

    图  13  矩形海湾时均悬沙浓度$\left\langle C \right\rangle $和时间浓度差$ \left\langle {{{C}}_{\rm{*}}}{{ - C }}\right\rangle$的空间分布

    Fig.  13  Distribution of suspended sediment concentration $\left\langle C \right\rangle $ and difference $\left\langle {{C_*} - C} \right\rangle $ in rectangular embayment

    图  14  水面幅值${\eta _a}(x)$和速度幅值${u_a}(x)$的理论解(收缩型海湾)

    Fig.  14  Theoretical solution of surface elevation ${\eta _a}(x)$ and velocity amplitude ${u_a}(x)$(convergent embayment)

  • [1] Nichols M M. Sediment accumulation rates and relative sea-level rise in lagoons[J]. Marine Geology, 1989, 88(3/4): 201−219.
    [2] Stevenson J C, Ward L G, Kearney M S. Vertical accretion in marshes with varying rates of sea level rise[M]//Wolfe D A. Estuarine Variability. New York: Academic Press, 1986: 241−259.
    [3] Perillo G M E. Geomorphology and Sedimentology of Estuaries[M]. Amsterdam: Elsevier Science, 1995.
    [4] Schuttelaars H M, de Swart H E. Initial formation of channels and shoals in a short tidal embayment[J]. Journal of Fluid Mechanics, 1999, 386: 15−42. doi: 10.1017/S0022112099004395
    [5] Schuttelaars H M, de Swart H E. Multiple morphodynamic equilibria in tidal embayments[J]. Journal of Geophysical Research: Oceans, 2000, 105(C10): 24105−24118. doi: 10.1029/2000JC900110
    [6] Hibma A, Schuttelaars H M, Wang Zhengbing. Comparison of longitudinal equilibrium profiles of estuaries in idealized and process-based models[J]. Ocean Dynamics, 2003, 53(3): 252−269. doi: 10.1007/s10236-003-0046-7
    [7] Lanzoni S, Seminara G. Long-term evolution and morphodynamic equilibrium of tidal channels[J]. Journal of Geophysical Research: Oceans, 2002, 107(C1): 1−1−1−13.
    [8] Todeschini I, Toffolon M, Tubino M. Long-term morphological evolution of funnel-shape tide-dominated estuaries[J]. Journal of Geophysical Research: Oceans, 2008, 113(C5): C05005.
    [9] Meerman C, Rottschäfer V, Schuttelaars H. Influence of geometrical variations on morphodynamic equilibria in short tidal basins[J]. Ocean Dynamics, 2019, 69: 221–238.
    [10] Prandle D. Relationships between tidal dynamics and bathymetry in strongly convergent estuaries[J]. Journal of Physical Oceanography, 2003, 33(12): 2738−2750. doi: 10.1175/1520-0485(2003)033<2738:RBTDAB>2.0.CO;2
    [11] van Rijn L C. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas[M]. Amsterdam: Aqua Publications, 1993.
    [12] Liu Xudong, Osher S, Chan T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1): 200−212. doi: 10.1006/jcph.1994.1187
    [13] Roelvink J A. Coastal morphodynamic evolution techniques[J]. Coastal Engineering, 2006, 53(2/3): 277−287.
    [14] 邹志利. 水波理论及其应用[M]. 北京: 科学出版社, 2005.

    Zou Zhili. Water Wave Theories and Their Applications[M]. Beijing: Science Press, 2005.
  • 加载中
图(14)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  18
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-12
  • 修回日期:  2019-03-05
  • 网络出版日期:  2020-11-18
  • 刊出日期:  2020-05-25

目录

    /

    返回文章
    返回