留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浪致混合对亚热带冬季海洋混合强度的影响

陈思宇 乔方利 黄传江 宋振亚

陈思宇,乔方利,黄传江,等. 浪致混合对亚热带冬季海洋混合强度的影响[J]. 海洋学报,2020,42(5):22–30,doi:10.3969/j.issn.0253−4193.2020.05.003
引用本文: 陈思宇,乔方利,黄传江,等. 浪致混合对亚热带冬季海洋混合强度的影响[J]. 海洋学报,2020,42(5):22–30,doi:10.3969/j.issn.0253−4193. 2020.05.003
Chen Siyu,Qiao Fangli,Huang Chuanjiang, et al. The reduced winter vertical mixing in the subtropical oceans by the surface wave-induced mixing[J]. Haiyang Xuebao,2020, 42(5):22–30,doi:10.3969/j.issn.0253−4193.2020.05.003
Citation: Chen Siyu,Qiao Fangli,Huang Chuanjiang, et al. The reduced winter vertical mixing in the subtropical oceans by the surface wave-induced mixing[J]. Haiyang Xuebao,2020, 42(5):22–30,doi:10.3969/j.issn.0253−4193.2020.05.003

浪致混合对亚热带冬季海洋混合强度的影响

doi: 10.3969/j.issn.0253-4193.2020.05.003
基金项目: 国家自然科学基金(41821004,U1606405);国家重点研发计划(2016YFC1401403);中国−东盟海上合作基金项目“东南亚海洋环境预报与灾害预警系统建设”。
详细信息
    作者简介:

    陈思宇(1987-),男,吉林省长春市人,从事海洋混合及海气通量研究。E-mail:chensiyu@fio.org.cn

    通讯作者:

    乔方利(1966-),男,山东省庆云县人,从事海洋数值模式发展、海洋与气候变化等研究。E-mail:qiaofl@fio.org.cn

  • 中图分类号: P731.26

The reduced winter vertical mixing in the subtropical oceans by the surface wave-induced mixing

  • 摘要: 上层海洋在全球气候系统中起着至关重要的作用。对上层海洋层结及混合的模拟偏差一直是海洋和气候数值模式发展中悬而未决的问题。本文首先评估了CMIP5中45个模式对上层海洋层结模拟的偏差,确认了冬季亚热带地区海洋模式垂向混合偏强。随后,基于自然资源部第一海洋研究所地球系统模式(FIO-ESM v1.0),分别开展了1986−2005年期间包含和关闭海浪垂向混合情况下的数值实验,分析浪致混合对亚热带冬季海洋混合强度模拟的影响及机制。发现浪致混合使得气候模式中亚热带海域冬季的海洋层结增强,增强的层结使上层海洋更加稳定。首次揭示了增加浪致混合反而降低了海洋总体的垂向混合率:浪致混合使北半球冬季亚热带海域混合率从无浪实验的227 cm2/s降低到有浪实验的178 cm2/s,降低了21.6%;南半球冬季亚热带海域混合率从无浪实验的189 cm2/s降低到有浪实验的165 cm2/s,降低了12.7%。进一步分析发现,浪致混合主要是通过增加冬季亚热带海域上层海洋的热含量从而强化了海洋的层结,最终改善了气候模式对上层海洋混合的模拟。
  • 图  1  CMIP5中45个模式模拟的南、北半球冬季亚热带地区上层海洋(2 000 m)平均层结强弱及多模式平均结果与观测结果的比较

    Fig.  1  The averaged stratification in the subtropical regions of North Hemisphere and South Hemisphere during the boreal and austral winters from the 45 CMIP5 models, multi-model mean, and observations

    图  2  浪致混合对南、北半球冬季亚热带地区上层海洋(2 000 m)平均层结强弱的影响

    Fig.  2  The simulation of the averaged stratification in the subtropical regions of North Hemisphere and South Hemisphere for the cases with and without surface wave-induced mixing

    图  3  多模式模拟的层结强度与实际观测强度偏差(MMM−Ob)和浪致混合贡献的偏差(Bv−noBv)的比较

    Fig.  3  The difference of the multi-model mean and the observations (MMM−Ob) compared with the contribution of the surface wave-induced mixing (Bv−noBv)

    图  4  有浪实验与无浪实验模拟的混合率之差

    Fig.  4  The difference of mixing coefficient between the cases with and without surface wave-induced mixing

    图  5  有浪实验与无浪实验模拟的海洋温度差(单位:℃)

    Fig.  5  The difference of temperature between the cases with and without surface wave-induced mixing (unit: ℃)

    图  6  南、北半球浪致混合引起的气候态月平均的上层海洋(0~2 000 m)温度变化

    Fig.  6  The difference of climatological monthly averaged temperature of the upper ocean (0–2 000 m) in both the North Hemisphere and South Hemisphere for the cases with and without surface wave-induced mixing

    表  1  CMIP5中45个气候模式情况

    Tab.  1  The details of the 45 models of the CMIP5

    序号模式名称研发机构海洋模式参考文献
    1ACCESS1-0CSIRO-BOMMOM4P1Bi[19]
    2ACCESS1-3CSIRO-BOMMOM4P1
    3BCC-CSM1-1BCC-CMAMOM4_L40http://bcc.cma.gov.cn/bccsm/htm/
    4BCC-CSM1-1-mBCC-CMAMOM4_L40
    5CanESM2CCCMACanOM4Chylek等[20]
    6CCSM4NCARPOP2Danabasoglu等[21]
    7CESM1-BGCNSF-DOE-NCARPOP2
    8CESM1-CAM5NSF-DOE-NCARPOP2
    9CESM1-CAM5-1-FV2NSF-DOE-NCARPOP2
    10CESM1-FASTCHEMNSF-DOE-NCARPOP2
    11CESM1-WACCMNSF-DOE-NCARPOP2
    12CMCC-CESMCMCCOPA8.2Madec等[22]
    13CMCC-CMCMCCOPA8.2
    14CMCC-CMSCMCCOPA8.2
    15CNRM-CM5CNRM-CEFACSNEMOv3.3Voldoire等[23]
    16CSIRO-Mk3-6-0CSIRO-QCCCEMOM2.2Gordon等[24]
    17FGOALS-g2LASG-CESSLICOM2Bao等[25]
    18FIO-ESMFIO-SOAPOP2Qiao等[15]
    19GFDL-CM2p1NOAA-GFDLMOM4.0Griffies等[26]
    20GFDL-CM3NOAA-GFDLMOM4P1
    21GFDL-ESM2GNOAA-GFDLGOLDDunne等[27]
    22GFDL-ESM2MNOAA-GFDLMOM4P1
    23GISS-E2-HGISS-NASAHYCOMSun和Bleck[28]
    24GISS-E2-H-CCGISS-NASAHYCOM
    25GISS-E2-RGISS-NASARussellLiu等[29]
    26GISS-E2-R-CCGISS-NASARussell
    27HadCM3MOHCHadOM3Gordon等[30]
    28HadGEM2-AONMA/KMAMOHCHadGOM2Martin等[31]
    29HadGEM2-CCNMA/KMAMOHCHadGOM2Johns等[32]
    30HadGEM2-ESNMA/KMAMOHCHadGOM2
    31INMCM4INMINMOMJohns等[32]
    32IPSL-CM5A-LRIPSLNEMO2.3Dufresne等[33]
    33IPSL-CM5A-MRIPSLNEMO2.3
    34IPSL-CM5B-LRIPSLNEMO2.3
    35MIROC4hMIROCCOCO3.4Sakamoto等[34]
    下载: 导出CSV
  • [1] de Boyer Montégut C, Madec G, Fischer A S, et al. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology[J]. Journal of Geophysical Research, 2004, 109(C12): C12003. doi: 10.1029/2004JC002378
    [2] Martin P J. Simulation of the mixed layer at OWS November and Papa with several models[J]. Journal of Geophysical Research, 1985, 90(C1): 903−916. doi: 10.1029/JC090iC01p00903
    [3] Ezer T. On the seasonal mixed layer simulated by a basin-scale ocean model and the Mellor-Yamada turbulence scheme[J]. Journal of Geophysical Research, 2000, 105(C7): 16843−16855. doi: 10.1029/2000JC900088
    [4] Belcher S E, Grant A L M, Hanley K E, et al. A global perspective on Langmuir turbulence in the ocean surface boundary layer[J]. Geophysical Research Letters, 2012, 39(18): L18605.
    [5] Huang Chuanjiang, Qiao Fangli, Shu Qi, et al. Evaluating austral summer mixed-layer response to surface wave–induced mixing in the Southern Ocean[J]. Journal of Geophysical Research, 2012, 117(C11): C00J18.
    [6] Huang Chuanjiang, Qiao Fangli, Dai Dejun. Evaluating CMIP5 simulations of mixed layer depth during summer[J]. Journal of Geophysical Research, 2014, 119(4): 2568−2582.
    [7] Kuhlbrodt T, Gregory J M. Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change[J]. Geophysical Research Letters, 2012, 39(18): L18608.
    [8] Forest C E, Stone P H, Sokolov A P. Estimated PDFs of climate system properties including natural and anthropogenic forcings[J]. Geophysical Research Letters, 2006, 33(1): L01705.
    [9] Forest C E, Stone P H, Sokolov A P. Constraining climate model parameters from observed 20th century changes[J]. Tellus A: Dynamic Meteorology and Oceanography, 2008, 60(5): 911−920. doi: 10.1111/j.1600-0870.2008.00346.x
    [10] Boé J, Hall A, Qu X. Deep ocean heat uptake as a major source of spread in transient climate change simulations[J]. Geophysical Research Letters, 2009, 36(22): L22701. doi: 10.1029/2009GL040845
    [11] Sokolov A P, Forest C E, Stone P H. Sensitivity of climate change projections to uncertainties in the estimates of observed changes in deep-ocean heat content[J]. Climate Dynamics, 2010, 34(5): 735−745. doi: 10.1007/s00382-009-0556-1
    [12] Griffies S M, Greatbatch R J. Physical processes that impact the evolution of global mean sea level in ocean climate models[J]. Ocean Modelling, 2012, 51: 37−72. doi: 10.1016/j.ocemod.2012.04.003
    [13] Ilıcak M, Adcroft A J, Griffies S M, et al. Spurious dianeutral mixing and the role of momentum closure[J]. Ocean Modelling, 2012, 45-46: 37−58. doi: 10.1016/j.ocemod.2011.10.003
    [14] Flato G, Marotzke J, Abiodun B, et al. Evaluation of climate models[M]//IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013.
    [15] Qiao Fangli, Song Zhenya, Bao Ying, et al. Development and evaluation of an Earth System Model with surface gravity waves[J]. Journal of Geophysical Research, 2013, 118(9): 4514−4524.
    [16] Chen Siyu, Qiao Fangli, Huang Chuanjiang, et al. Effects of the non-breaking surface wave-induced vertical mixing on winter mixed layer depth in subtropical regions[J]. Journal of Geophysical Research, 2018, 123(4): 2934−2944.
    [17] Schmidtko S, Johnson G C, Lyman J M. MIMOC: a global monthly isopycnal upper-ocean climatology with mixed layers[J]. Journal of Geophysical Research, 2013, 118(4): 1658−1672.
    [18] Sallée J B, Shuckburgh E, Bruneau N, et al. Assessment of Southern Ocean mixed-layer depths in CMIP5 models: historical bias and forcing response[J]. Journal of Geophysical Research, 2013, 118(4): 1845−1862.
    [19] Bi Daohua. The ACCESS coupled model: description, control climate and evaluation[J]. Australia Meteorological Oceanography, 2013, 63(1): 41−64. doi: 10.22499/2.6301.004
    [20] Chylek P, Li J, Dubey M K, et al. Observed and model simulated 20th century Arctic temperature variability: Canadian earth system model CanESM2[J]. Atmospheric Chemistry and Physics, 2011, 11(8): 22893−22907.
    [21] Danabasoglu G, Bates S C, Briegleb B P, et al. The CCSM4 ocean component[J]. Journal of Climate, 2012, 25(5): 1361−1389. doi: 10.1175/JCLI-D-11-00091.1
    [22] Madec G, Delecluse P, Imbard M, et al. OPA 8.1 ocean general circulation model reference manual[R]. Paris: Institut Pierre-Simon Laplace, 1998.
    [23] Voldoire A, Sanchez-Gomez E, Salas y Mélia D, et al. The CNRM-CM5.1 global climate model: description and basic evaluation[J]. Climate Dynamics, 2013, 40(9/10): 2091−2121.
    [24] Gordon H B, O’Farrell S P, Collier M A, et al. The CSIRO Mk3.5 climate model[R]. Aspendale: CAWCR, 2010.
    [25] Bao Qing, Lin Pengfei, Zhou Tianjun, et al. The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2[J]. Advances in Atmospheric Sciences, 2013, 30(3): 561−576. doi: 10.1007/s00376-012-2113-9
    [26] Griffies S M, Winton M, Donner L J, et al. The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations[J]. Journal of Climate, 2011, 24(13): 3520−3544. doi: 10.1175/2011JCLI3964.1
    [27] Dunne J P, John J G, Shevliakova E, et al. GFDL's ESM2 global coupled climate-carbon earth system models. Part II: carbon system formulation and baseline simulation characteristics[J]. Journal of Climate, 2013, 26(7): 2247−2267. doi: 10.1175/JCLI-D-12-00150.1
    [28] Sun Shan, Bleck R. Multi-century simulations with the coupled GISS–HYCOM climate model: control experiments[J]. Climate Dynamics, 2006, 26(4): 407−428. doi: 10.1007/s00382-005-0091-7
    [29] Liu Jiping, Schmidt G A, Martinson D G, et al. Sensitivity of sea ice to physical parameterizations in the GISS global climate model[J]. Journal of Geophysical Research, 2003, 108(C2): 3053.
    [30] Gordon C, Cooper C, Senior C A, et al. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments[J]. Climate Dynamics, 2000, 16(2/3): 147−168. doi: 10.1007/s003820050010
    [31] Martin G M, Bellouin N, Collins W J, et al. The HadGEM2 family of Met Office Unified Model climate configurations[J]. Geoscientific Model Development, 2011, 4(3): 723−757. doi: 10.5194/gmd-4-723-2011
    [32] Johns T C, Durman C F, Banks H T, et al. The new Hadley Centre climate model (HadGEM1): evaluation of coupled simulations[J]. Journal of Climate, 2006, 19(7): 1327−1353. doi: 10.1175/JCLI3712.1
    [33] Dufresne J L, Foujols M A, Denvil S, et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5[J]. Climate Dynamics, 2013, 40(9-10): 2123−2165. doi: 10.1007/s00382-012-1636-1
    [34] Sakamoto T T, Komuro Y, Nishimura T, et al. MIROC4h—A new high-resolution atmosphere-ocean coupled general circulation model[J]. Journal of the Meteorological Society of Japan, 2012, 90(3): 325−359. doi: 10.2151/jmsj.2012-301
    [35] Watanabe M, Suzuki T, O’ishi R, et al. Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity[J]. Journal of Climate, 2010, 23(23): 6312−6335. doi: 10.1175/2010JCLI3679.1
    [36] Watanabe S, Hajima T, Sudo K, et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments[J]. Geoscientific Model Development, 2011, 4(4): 845−872. doi: 10.5194/gmd-4-845-2011
    [37] Jungclaus J H, Fischer N, Haak H, et al. Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-earth system model[J]. Journal of Advances in Modeling Earth Systems, 2013, 5(2): 422−446. doi: 10.1002/jame.20023
    [38] Yukimoto S, Adachi Y, Hosaka M, et al. A new global climate model of the meteorological research institute: MRI-CGCM3—model description and basic performance[J]. Journal of the Meteorological Society of Japan, 2012, 90A: 23−64. doi: 10.2151/jmsj.2012-A02
    [39] Bentsen M, Bethke I, Debernard J B, et al. The Norwegian Earth System Model, NorESM1-M Part 1: Description and basic evaluation[J]. Geoscientific Model Development Discussions, 2013(6): 687−720.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  166
  • HTML全文浏览量:  14
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-08
  • 修回日期:  2019-05-09
  • 网络出版日期:  2020-11-18
  • 刊出日期:  2020-05-25

目录

    /

    返回文章
    返回