留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Chirp数据和Biot-Stoll模型反演南海北部陆坡海底表层沉积物物理性质

周庆杰 李西双 刘乐军 刘洋廷 高珊 周航 王景强 李天光

周庆杰,李西双,刘乐军,等. 基于Chirp数据和Biot-Stoll模型反演南海北部陆坡海底表层沉积物物理性质[J]. 海洋学报,2020,42(3):72–82,doi:10.3969/j.issn.0253−4193.2020.03.007
引用本文: 周庆杰,李西双,刘乐军,等. 基于Chirp数据和Biot-Stoll模型反演南海北部陆坡海底表层沉积物物理性质[J]. 海洋学报,2020,42(3):72–82,doi:10.3969/j.issn.0253−4193.2020.03.007
Zhou Qingjie,Li Xishuang,Liu Lejun, et al. Physical properties of the seabed inversed based on Chirp data and the Biot-Stoll model in the northern continental slope of the South China Sea[J]. Haiyang Xuebao,2020, 42(3):72–82,doi:10.3969/j.issn.0253−4193.2020.03.007
Citation: Zhou Qingjie,Li Xishuang,Liu Lejun, et al. Physical properties of the seabed inversed based on Chirp data and the Biot-Stoll model in the northern continental slope of the South China Sea[J]. Haiyang Xuebao,2020, 42(3):72–82,doi:10.3969/j.issn.0253−4193.2020.03.007

基于Chirp数据和Biot-Stoll模型反演南海北部陆坡海底表层沉积物物理性质

doi: 10.3969/j.issn.0253-4193.2020.03.007
基金项目: 全球变化与海气相互作用(GASI-GEOGE-05);国家自然科学基金(41876061);国家重点研发计划(2016YFC0301403);基于地球物理属性数据反演工程地质参数研究。
详细信息
    作者简介:

    周庆杰(1989-),男,山东省安丘市人,助理工程师,从事海洋地球物理调查与研究相关工作。E-mail:zhouqj@fio.org.cn

    通讯作者:

    李西双(1976-),男,山东省嘉祥县人,副研究员,主要从事海洋浅层沉积结构、活动构造的声学探测与研究。E-mail:lxs@fio.org.cn

  • 中图分类号: P736.21

Physical properties of the seabed inversed based on Chirp data and the Biot-Stoll model in the northern continental slope of the South China Sea

  • 摘要: 浅地层剖面是基于声学信号(频率在几百至几千赫兹)在沉积物中的传播得到可反映沉积地层结构的数据,海底反射系数与沉积物物理性质密切相关。Biot-Stoll声波传播理论模型可以预测海底沉积物的物理性质,构建反射系数等声学参数与物理参数之间的关系,但在不同的海域采用不同的参数所获得的效果不同。为此,本文基于南海北部陆坡海底表层沉积物的实测物理参数,利用Biot-Stoll模型建立研究区海底反射系数和沉积物物理性质之间的关系,结果表明模型计算值与样品实测值吻合度总体较好,偏差在0.1%~4.9%之间,并建立了频率3.5 kHz时海底反射系数与沉积物孔隙度、密度、平均粒径之间的关系方程,且方程拟合度较高,可决系数R2均大于0.99。在对典型Chirp剖面数据计算其海底反射系数的基础上,反演了海底表层沉积物的孔隙度、密度、颗粒平均粒径等物理性质,其中反演孔隙度、密度、平均粒径与实测孔隙度、密度、平均粒径相对误差均小于5%,结果与实测值基本相符,表明该反演方法在南海北部陆坡区的应用是可行的。
  • 图  1  Biot参数计算反射系数的几何示意图(据文献[2])

    ${D_i}$和${D_r}$分别为入射波和反射波的复位移振幅值;${A_1}$和${A_2}$分别为沉积物骨架在快波和慢波作用下的复位移振幅值;${B_1}$和${B_2}$分别为快波和慢波作用下孔隙流体相对于骨架运动的复相对位移

    Fig.  1  Geometric sketch of reflection coefficient calculated by Biot parameter (according to reference [2])

    ${D_i}$ and ${D_r}$ are the reset amplitude values of incident wave and reflected wave respectively; ${A_1}$ and ${A_2}$are the resetting amplitude of sediment skeleton under the action of fast wave and slow wave respectively; ${B_1}$ and ${B_2}$ are the complex relative displacement of pore fluid relative to skeleton motion under the action of fast wave and slow wave respectively

    图  2  研究区位置、表层沉积物取样站位及典型Chirp浅剖测线分布

    Fig.  2  The location of the study area, surface sediment sampling stations and typical Chirp shallow profiles

    图  3  子波褶积合成记录与原始剖面数据对比

    Fig.  3  The wavelet convolution synthetic seismogram and original section data

    图  4  Lw01剖面计算得到的海底反射系数

    a为Lw01 Chirp浅地层剖面;b为Lw01剖面的海底反射系数

    Fig.  4  Sea bottom reflection coefficients calculated from Profile Lw01

    a is Lw01 Chirp sub-bottom profile; b is the seabed reflection coefficients of Profile Lw01

    图  5  反射系数与孔隙度的关系

    盒图为海底表层沉积物样品测试数据计算的反射系数;红色实线为Biot-Stoll模型计算的反射系数,样品测试频率与模型计算频率均为25 kHz

    Fig.  5  The relationship between reflection coefficient and porosity

    The boxplot is the reflection coefficient calculated from the test data of seabed surface sediment samples; the red solid line is the reflection coefficient calculated by the biot-stoll model, and the sample test frequency and model calculation frequency are both 25 kHz

    图  6  海底反射系数与沉积物物理性质的相关关系

    a. 反射系数随频率的变化;b. 反射系数随孔隙度的变化(f=3.5 kHz);c. 反射系数随密度的变化(f=3.5 kHz);d. 反射系数随平均粒径的变化(f=3.5 kHz)

    Fig.  6  Correlation between bottom reflection coefficients and sediment physical properties

    a. Variation of reflection coefficient with frequency; b. variation of reflection coefficient with porosity (f = 3.5 kHz); c. variation of reflection coefficient with density (f = 3.5 kHz); d. variation of reflection coefficient with mean grain size (f = 3.5 kHz)

    图  7  Lw01、Lw02、Lw03剖面沉积物物理性质反演结果

    Fig.  7  Inversion results of sediments physical properties in profiles Lw01, Lw02 and Lw03

    图  8  Lw01、Lw02和Lw03测线对应的海底地形剖面图

    Fig.  8  The seabed topography section of profiles Lw01、Lw02 and Lw03

    表  1  Biot-Stoll模型输入的沉积物物理参数

    Tab.  1  The input sediment physical parameters of the Biot-Stoll model

    参数Biot-Stoll模型取值
    颗粒密度${\rho _g}/ {\rm {kg\cdot{m^{-3}}}}$实测
    孔隙度$n$实测
    孔隙曲折度$\alpha $$\alpha = \left\{ {\begin{aligned}& {\begin{array}{*{20}{c}} {1.35}&{\varphi \leqslant 4} \end{array}} \\ & {\begin{array}{*{20}{c}} {{\rm{ - }}0.3 + 0.412\;5\varphi }&{4 < \varphi < 8} \end{array}} \\ & {\begin{array}{*{20}{c}} {3.0}&{\varphi \geqslant 8} \end{array}} \end{aligned}} \right.\;\;\;\;\;\varphi = {\rm{ - lo}}{{\rm{g}}_2}d$,$\varphi $为中值粒径;d为颗粒直径,单位:mm
    渗透率$\kappa /{\rm {m}^2}$$\kappa = \dfrac{{{d^2}{n^3}}}{{180{{(1 - n)}^2}}}\dfrac{1}{{\sqrt {10} }}$
    海水动力黏度$\eta /{\rm {Pa}} \cdot {\rm s}$0.001
    颗粒体积模量${K_g}/{\rm {Pa}}$3.2×1010
    海水体积模量${K_w}/{\rm {Pa}}$2.395×109
    海水密度${\rho _w}/ {\rm {kg\cdot{m^{-3}}}}$1 023
    框架剪切模量${\mu _0}/{\rm {Pa}}$${\mu _0} = 1.835 \times {10^5}{\left(\dfrac{n}{{1 - n}}\right)^{ - 1.12}}\sqrt {{\tau _a}(z)} $${\tau _a}(z) = (1 - n)({\rho _s} - {\rho _f})gz$,${\tau _a}(z)$为沉积物平均有效压力,重力加速度$g = 9.8\;{\rm {m/{s^{ 2} } } }$,z为海底以下沉积物深度,单位:m,ρs为颗粒密度,ρf为孔隙流体密度
    框架体积模量${K_0}/{\rm {Pa}}$${K_0} = \dfrac{{2{\mu _0}(1 + \sigma )}}{{3(1 - 2\sigma )}}$,$\sigma $为沉积物骨架的泊松比
    孔隙大小$a$$ a = \dfrac{d}{3}\cdot \dfrac{n}{{1 - n}} \cdot \dfrac{1}{{1.8}}$
    体积对数衰减${\delta _f}$${\delta _f}({z_s}) = {\delta _f}({z_0})\sqrt {{z_0}/{z_s}} $,z0zs分别为浅表层和表层沉积物深度
    下载: 导出CSV

    表  2  Chirp子波相关参数

    Tab.  2  The relevant parameters of Chirp wavelet

    属性子波特征
    频带宽度1 000~6 000 Hz
    脉冲长度5 ms
    脉冲幅度2.5 ms
    采样间隔13 µs
    下载: 导出CSV

    表  3  站位实测物理性质与反演结果对比

    Tab.  3  Comparison between the measured physical properties and the inversion results

    取样站位表层沉积物类型孔隙度密度/kg·m−3平均粒径(Φ)
    实测值反演值相对误差/%实测值反演值相对误差/%实测值反演值相对误差/%
    GLW3101粉砂质黏土0.6510.645−0.921 4401 4500.695.55.73.63
    GLW3102粉砂质黏土0.7470.738−1.201 3681 3740.436.26.54.84
    GLW3103粉砂质黏土0.7830.758−3.191 3501 343−0.528.38.2−1.20
    GLW3105粉砂质黏土0.7980.792−0.751 3101 306−0.318.48.62.38
    GLW3108黏土0.8060.8120.741 2901 3031.018.79.14.60
      注:Φ=−log2dd为颗粒粒径,单位: mm。
    下载: 导出CSV
  • [1] 何起祥. 中国海洋沉积地质学[M]. 北京: 海洋出版社, 2006.

    He Qixing. Marine Sedimentary Geology of China[M]. Beijing: China Ocean press, 2006.
    [2] Schock S G. A method for estimating the physical and acoustic properties of the sea bed using chirp sonar data[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4): 1200−1217. doi: 10.1109/JOE.2004.841421
    [3] Schock S G. Remote estimates of physical and acoustic sediment properties in the South China Sea using chirp sonar data and the biot model[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4): 1218−1230. doi: 10.1109/JOE.2004.842253
    [4] 曹正良, 张叔英, 马在田. BICSQS模型与Biot-Stoll模型海底界面声波反射和散射的比较[J]. 声学学报, 2006, 31(5): 389−398. doi: 10.3321/j.issn:0371-0025.2006.05.002

    Cao Zhengliang, Zhang Shuying, Ma Zaitian. Comparison of reflections and interface scatterings from BICSQS model and Biot-Stoll model seafloors[J]. Acta Acustica, 2006, 31(5): 389−398. doi: 10.3321/j.issn:0371-0025.2006.05.002
    [5] 朱祖扬, 王东, 周建平, 等. 基于非饱和Biot-Stoll模型的海底沉积物介质声频散特性研究[J]. 地球物理学报, 2012, 55(1): 180−188. doi: 10.6038/j.issn.0001-5733.2012.01.017

    Zhu Zuyang, Wang Dong, Zhou Jianping, et al. Acoustic wave dispersion and attenuation in marine sediment based on partially gas-saturated Biot-Stoll model[J]. Chinese Journal of Geophysics, 2012, 55(1): 180−188. doi: 10.6038/j.issn.0001-5733.2012.01.017
    [6] 陈静, 阎贫, 王彦林, 等. 基于Biot-Stoll模型声速反演中的参数选择——以南海南部沉积物为例[J]. 热带海洋学报, 2012, 31(1): 50−54.

    Chen Jing, Yan Pin, Wang Yanlin, et al. Choice of parameters for Biot-Stoll model-based inversion of sound velocity of seafloor sediments in the southern South China Sea[J]. Journal of Tropical Oceanography, 2012, 31(1): 50−54.
    [7] 王景强, 郭常升, 刘保华, 等. 基于Buckingham模型和Biot-Stoll模型的南沙海域沉积物声速分布特征[J]. 地球学报, 2016, 37(3): 359−367. doi: 10.3975/cagsb.2016.03.13

    Wang Jingqiang, Guo Changsheng, Liu Baohua, et al. Sound speed distribution of seafloor sediments in Nansha Islands sea based on Buckingham model and Biot-Stoll model[J]. Acta Geoscientica Sinica, 2016, 37(3): 359−367. doi: 10.3975/cagsb.2016.03.13
    [8] 陶春辉. 海底沉积物声学原位测试和特性研究[D]. 杭州: 浙江大学, 2005.

    Tao Chunhui. In situ acoustic experiment and properties study in marine sediments[D]. Hangzhou: Zhejiang University, 2005.
    [9] 陈静, 吕修亚, 陈亮, 等. 基于Chirp数据反演琼州海峡海底沉积物物性[J]. 热带地理, 2017, 37(6): 874−879.

    Chen Jing, Lü Xiuya, Chen Liang, et al. Physical properties of the seabed inversed by chirp data in the Qiongzhou Strait[J]. Tropical Geography, 2017, 37(6): 874−879.
    [10] Velis D R. Stochastic sparse-spike deconvolution[J]. Geophysics, 2008, 73(1): 1−9.
    [11] Puryear C I, Castagna J P. Layer-thickness determination and stratigraphic interpretation using spectral inversion: Theory and application[J]. Geophysics, 2008, 73(2): R37−R48. doi: 10.1190/1.2838274
    [12] Zhang Rui, Castagna J. Seismic sparse-layer reflectivity inversion using basis pursuit decomposition[J]. Geophysics, 2011, 76(6): R147−R158. doi: 10.1190/geo2011-0103.1
    [13] Yuan Sanyi, Wang Shangxu. Spectral sparse Bayesian learning reflectivity inversion[J]. Geophysical Prospecting, 2013, 61(4): 735−746. doi: 10.1111/1365-2478.12000
    [14] Li X S, Zhou Q J, Su T Y, et al. Slope-confined submarine canyons in the Baiyun deep-water area, northern South China Sea: variation in their modern morphology[J]. Marine Geophysical Research, 2016(2): 95−112.
    [15] 丁巍伟, 黎明碧, 何敏, 等. 南海中北部陆架-陆坡区新生代构造-沉积演化[J]. 高校地质学报, 2009, 15(3): 339−350. doi: 10.3969/j.issn.1006-7493.2009.03.006

    Ding Weiwei, Li Mingbi, He Min, et al. Cenozoic tectono-sedimentary evolution in the middle part of northern continental shelf-slope region, South China Sea[J]. Geological Journal of China Universities, 2009, 15(3): 339−350. doi: 10.3969/j.issn.1006-7493.2009.03.006
    [16] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 168−178. doi: 10.1121/1.1908239
    [17] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. Ⅱ. Higher frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 179−191. doi: 10.1121/1.1908241
    [18] Stoll R D. Acoustic waves in saturated sediments[M]//Hampton L. Physics of Sound in Marine Sediments. Boston, MA: Springer, 1974: 19−39.
    [19] 朱林, 傅命佐, 刘乐军, 等. 南海北部白云凹陷陆坡海底峡谷地形地貌与沉积地层特征[J]. 海洋地质与第四纪地质, 2014, 34(2): 1−9.

    Zhu Lin, Fu Mingzuo, Liu Lejun, et al. Canyon morphology and sediments on northern slope of the Baiyun Sag[J]. Marine Geology & Quaternary Geology, 2014, 34(2): 1−9.
    [20] 周庆杰, 李西双, 徐元芹, 等. 一种基于水深梯度原理的海底滑坡快速识别方法——以南海北部陆坡白云深水区为例[J]. 海洋学报, 2017, 39(1): 138−147.

    Zhou Qingjie, Li Xishuang, Xu Yuanqin, et al. A rapid method to recognize submarine landslides based on the principle of water depth gradient: A case of Baiyun deep-water area, north slope of the South China Sea[J]. Haiyang Xuebao, 2017, 39(1): 138−147.
    [21] 秦蕴珊. 中国陆棚海的地形及沉积类型的初步研究[J]. 海洋与湖沼, 1963, 5(1): 71−85.

    Qin Yunshan. A preliminary study on the topography and sedimentary types of continental shelf seas in China[J]. Oceanologia et Limnologia Sinica, 1963, 5(1): 71−85.
    [22] 杨涛, 薛紫晨, 杨竞红, 等. 南海北部地区海洋沉积物中孔隙水的氢、氧同位素组成特征[J]. 地球学报, 2003, 24(6): 511−514. doi: 10.3321/j.issn:1006-3021.2003.06.005

    Yang Tao, Xue Zichen, Yang Jinghong, et al. Oxygen and hydrogen isotopic compositions of pore water from marine sediments in the northern South China Sea[J]. Acta Geoscientica Sinica, 2003, 24(6): 511−514. doi: 10.3321/j.issn:1006-3021.2003.06.005
    [23] 卢博. 东沙群岛海域沉积物及其物理学性质的研究[J]. 海洋学报, 1996, 18(6): 82−89.

    Lu Bo. Study on sediments and their physical properties in the waters of Dongsha Islands[J]. Haiyang Xuebao, 1996, 18(6): 82−89.
    [24] 李傲仙, 李延河, 乐国良. 深海沉积物中碲异常的成因[J]. 地球学报, 2005, 26(S1): 186−189.

    Li Aoxian, Li Yanhe, Le Guoliang. The cause for tellurium enrichment in deep-sea sediments[J]. Acta Geoscientica Sinica, 2005, 26(S1): 186−189.
    [25] Liu Jianguo, Xiang Rong, Chen Zhong, et al. Sources, transport and deposition of surface sediments from the South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2013, 71: 92−102. doi: 10.1016/j.dsr.2012.09.006
    [26] Zhao Hongquan, Jian Zhimin, Li Baohua, et al. Microtektites in the Middle Pleistocene deep-sea sediments of the South China Sea[J]. Science in China Series D: Earth Sciences, 1999, 42(5): 531−535. doi: 10.1007/BF02875247
    [27] 业治铮, 何起祥, 张明书, 等. 西沙石岛晚更新世风成生物砂屑灰岩的沉积构造和相模式[J]. 沉积学报, 1985, 3(1): 1−15.

    Ye Zhizheng, He Qixiang, Zhang Mingshu, et al. Sedimentary structure and facies pattern of bioarenaceous limestone in late pleistocene of Xisha Shidao[J]. Acta Sedimentologica Sinica, 1985, 3(1): 1−15.
    [28] 刘乐军, 傅命佐, 李家钢, 等. 荔湾3-1气田海底管道深水段地质灾害特征[J]. 海洋科学进展, 2014, 32(2): 162−174. doi: 10.3969/j.issn.1671-6647.2014.02.006

    Liu Lejun, Fu Mingzuo, Li Jiagang, et al. Geologic hazards in the deep pipeline routing area of the Liwan 3-1 Gas Field in the South China Sea[J]. Advances in Marine Science, 2014, 32(2): 162−174. doi: 10.3969/j.issn.1671-6647.2014.02.006
    [29] Zhou Qingjie, Li Xishuang, Zhou Hang, et al. Characteristics and genetic analysis of submarine landslides in the northern slope of the South China Sea[J]. Marine Geophysical Research, 2018, 40(3): 303−314.
    [30] 卢博, 李赶先, 黄韶健, 等. 中国黄海、东海和南海北部海底浅层沉积物声学物理性质之比较[J]. 海洋技术, 2005, 24(2): 28−33. doi: 10.3969/j.issn.1003-2029.2005.02.008

    Lu Bo, Li Ganxian, Huang Shaojian, et al. The comparing of seabed sediment acoustic-physical properties in the Yellow Sea, the East China Sea and northern the South China Sea[J]. Ocean Technology, 2005, 24(2): 28−33. doi: 10.3969/j.issn.1003-2029.2005.02.008
    [31] 黄绪德. 计算机在地学中的应用[J]. 物探化探计算技术, 1991, 13(2): 93−97.

    Huang Xude. Computer applications to geoscience[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1991, 13(2): 93−97.
    [32] 刘财, 刘洋, 王典, 等. 一种频域吸收衰减补偿方法[J]. 石油物探, 2005, 44(2): 116−118. doi: 10.3969/j.issn.1000-1441.2005.02.005

    Liu Cai, Liu Yang, Wang Dian, et al. A method to compensate strata absorption and attenuation in frequency domain[J]. Geophysical Prospecting for Petroleum, 2005, 44(2): 116−118. doi: 10.3969/j.issn.1000-1441.2005.02.005
    [33] 张志军, 周东红, 孙成禹, 等. 基于三维模型数据的地震振幅补偿处理技术的保幅性分析[J]. 物探与化探, 2015, 39(3): 621−626. doi: 10.11720/wtyht.2015.3.32

    Zhang Zhijun, Zhou Donghong, Sun Chengyu, et al. An analysis of the amplitude preservation of seismic amplitude compensation processing technology based on 3D model data[J]. Geophysical and Geochemical Exploration, 2015, 39(3): 621−626. doi: 10.11720/wtyht.2015.3.32
    [34] Park C, Kim W, Shin J, et al. Study on acoustic impedance conversion using an optimal chirplet analyzed in chirp SBP raw data[J]. Marine Geophysical Research, 2019, 40(3): 385−393. doi: 10.1007/s11001-019-09377-7
    [35] 赵利, 彭学超, 钟和贤, 等. 南海北部陆架区表层沉积物粒度特征与沉积环境[J]. 海洋地质与第四纪, 2016, 36(6): 111−122.

    Zhao Li, Peng Xuechao, Zhong Hexian, et al. Characteristics of grain size distribution of surface sediments and depositional environments in the northern shelf region of the South China Sea[J]. Marine Geology & Quaternary Geology, 2016, 36(6): 111−122.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  608
  • HTML全文浏览量:  158
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-21
  • 修回日期:  2019-08-27
  • 网络出版日期:  2020-11-18
  • 刊出日期:  2020-03-25

目录

    /

    返回文章
    返回