Distribution characteristics and influencing factors of bacterioplankton community with offshore distance variation in the surface seawater of Bohai Bay
-
摘要: 为研究渤海湾近岸污染对远近岸海域微生态的影响,利用高通量测序技术,对渤海湾不同离岸距离的6个站位采集表层海水,进行浮游细菌群落结构分析,结合环境、空间因素探究影响其变化的主要因素。结果表明:研究区域存在环境因子的梯度变化,如氮营养盐在近岸高于远岸;细菌α-多样性在不同站位间差异不显著,但仍显示在近岸相对较高;细菌群落结构随离岸距离变化显著,γ-变形菌和拟杆菌在近岸显著富集,且与氮营养盐的含量有关;蓝细菌在远岸显著富集,且与氨氮、透明度、电导率有关;邻体矩阵主坐标单独解释部分对群落结构变异的贡献率最大(38.1%),说明可能存在尚未测量但具有空间结构的环境变量影响群落空间分布;结合功能预测的结果推测近岸区域的富营养与烃类污染等可能影响群落变化。本文从环境和空间影响两方面探讨了渤海湾不同离岸距离的海域浮游细菌群落结构变化,为研究渤海湾海洋生态及环境保护提供一定的参考。Abstract: In order to study the impact of coastal pollution in Bohai Bay on the microecology of sea areas with different distances from the shore, the bacterioplankton community compositions (BCCs) in surface seawater samples from 6 stations with different offshore distances along the coastal region of Bohai Bay were analyzed through high throughput sequencing technology, and the main factors affecting the variation of BCCs were explored by combining environmental and spatial factors in this region. The results showed that there was gradient change of environmental factor in the studied region, such as the contents of nitrogen nutrients were higher in the nearshore station than those in the offshore station. Although there was no significant difference tested for the alpha diversity among different sites, the diversity indexes were still relatively higher in the nearshore stations. The bacterioplankton community compositions were significantly varied with the change of offshore distances. Members of Gammaproteobacteria and Bacteroidetes were mainly enriched in nearshore stations which were closely related with the contents of nitrogen nutrients, members of Cyanobacteria were mainly enriched in offshore stations, which were closely related to ammonia nitrogen, transparency and conductivity. The variance partitioning analysis showed that PCNM variables purely contributed most (38.1%) to the variation of community structure, indicating that there may be environmental variables with spatial structure within the research scope that had not yet been measured may affect the spatial distribution of the bacterioplankton community. Meanwhile, the results of functional prediction indicated that the eutrophication, hydrocarbon pollution and other environmental conditions in the nearshore station may contribute to the change of BCCs. This study explored the variation of offshore-distance-varied BCC in the coastal region of Bohai Bay from environmental and spatial impact, which may provide reference for the study and protection of marine environment in Bohai Bay.
-
图 4 基于LDA分析的3组间差异微生物展示图
具有显著差异的分类单元节点被着以不同颜色,该分类单元的最高等级对应的分支区域也着以相同颜色。如果分类单元在组间没有显著差异,则相应节点为黄色
Fig. 4 Least discriminant analysis (LDA) effect size taxonomic cladogram comparing all samples categorized by three bacterial groups
Significantly discriminant taxon nodes are colored and branch areas are shaded according to the highest ranked group for that taxon. If the taxon is not significantly differentially represented among sample groups, the corresponding node is colored yellow
图 5 差异物种和环境因子的相关性分析
热图代表各差异物种和环境因子的Pearson相关性系数,星号代表显著性:* 0.05,** 0.001
Fig. 5 Heat map demonstrate correlations between highly abundant discriminant taxa of three groups and seawater environmental parameters
Value of the heat map bar represents the Pearson correlation coefficient (r ), and the asterisk represents the significance of the relationship with * 0.05 and ** 0.001
图 6 群落结构变异因素分析
基于Hellinger转化的OTU数据,通过海水环境因子(左上)、地理因素包括线性趋势(右上)和邻体矩阵主坐标(下)来对群落结构进行变异分解分析。每一个解释部分都经过前向选择选出最适模型的环境因子子集、线性趋势变量子集和邻体矩阵主坐标子集(n=6)
Fig. 6 Variation partitioning of bacterial communities
Hellinger transformed OTU matrix was used as responsible variable by the water environmental factors (Env., top left and the spatial factors including linear trend (Trend, top right) and PCNM variables (bottom). Forward selection procedures were used to select the best subset of environmental, trend and PCNM variables explaining community variation respectively (n = 6)
表 1 取样站位的环境特征与海水理化性质
Tab. 1 Environment and seawater properties of sampling sites
变量 TJ13 TJ14 TJ16 TJ17 TJ23 TJ27 经度 118.093 6°E 118.884 1°E 117.766 9°E 118.488 6°E 117.742 2°E 117.727 3°E 纬度 38.673 9°N 38.659 1°N 38.670 1°N 38.634 8°N 38.667°N 38.671 4°N 离岸距离/km 44.0 113.1 16.0 79.0 14.0 12.0 风向 NE NE NW NE NW NW 风速/m·s−1 1.0 3.0 2.7 4.0 2.0 0.8 水深/m 12.8 22.0 5.0 8.5 4.0 3.9 气压/kPa 1 012 1 012 1 012 1 011 1 012 1 012 气温/℃ 26.4 24 28.2 23.4 28.3 30.4 水温/℃ 26.9 24.0 27.0 23.5 27.0 28.4 湿度/% 63.6 76.9 62.9 68.4 30.4 56.3 透明度/cm 100 300 200 200 200 170 盐度 23.5 29.5 29.6 29.5 29.5 29.4 溶解氧含量/mg·L–1 7.51 6.70 6.51 6.88 5.79 6.85 pH 8.18 8.10 8.12 8.06 8.12 8.15 电导率/mS·cm–1 45.1 45.6 45.4 45.6 45.3 45.2 化学需氧量/mg·L –1 0.64 1.13 1.05 0.56 1.35 1.60 亚硝酸盐/mg·L –1 0.030 0.006 0.134 0.016 0.108 0.106 硝酸盐/mg·L –1 0.114 0.127 0.318 0.103 0.402 0.356 氨氮/mg·L –1 0.011 0.133 0.009 0.043 0.019 0.064 无机氮/mg·L –1 0.155 0.266 0.461 0.162 0.529 0.526 活性硅酸盐/mg·L –1 0.768 0.890 0.712 0.712 0.812 1.010 活性磷酸盐/mg·L –1 0.004 0.003 0.007 0.004 0.016 0.005 表 2 海水样品的微生物多样性指数分布
Tab. 2 Analysis of microbial diversity index of the six sea water samples
样品号 OTU 丰度 谱系多样性值 Shannon值 TJ13 628.80 ± 13.30 63.19 ± 2.23 4.83 ± 0.11 TJ14 603.05 ± 27.05 64.57 ± 1.49 4.92 ± 0.05 TJ16 718.30 ± 60.28 69.92 ± 3.73 5.09 ± 0.02 TJ17 827.85 ± 92.55 72.22 ± 2.34 5.43 ± 0.43 TJ23 836.73 ± 125.36 79.48 ± 8.22 5.78 ± 0.28 TJ27 639.23 ± 46.51 63.89 ± 4.82 5.06 ± 0.09 注:表中数据为平均值±标准差; 加粗字体表示相应数值在近岸站位相对高于远岸站位。 表 3 群落功能在不同组别站位间的相对丰度差异分析
Tab. 3 Difference analysis of relative functional group abundance between different groups of stations
功能组 第1组/% 第2组/% 第3组/% 甲烷营养 0.01±0.02 0.01±0.01 0±0 甲醇氧化 0.55±0.13 0.61±0.06 0.51±0.18 甲基营养 0.57±0.12 0.62±0.06 0.51±0.18 好氧氨氧化 0±0 0.01±0.01 0.01±0.02 有氧亚硝酸盐氧化 0.04±0.02a 0.09±0.03b 0.09±0.04ab 硝化作用 0.05±0.02a 0.1±0.02b 0.1±0.06ab 硫酸盐呼吸 0.01±0.01 0.01±0.01 0.01±0.01 硫化物呼吸 0.01±0.01 0.01±0.01 0.01±0.01 硝化反硝化作用 0.14±0.06 0.22±0.09 0.1±0 亚硝酸盐脱氮作用 0.14±0.06 0.22±0.09 0.1±0 一氧化二氮反硝化作用 0.14±0.06 0.22±0.09 0.1±0 反硝化作用 0.14±0.06 0.22±0.09 0.1±0 Chitinolysis 0.02±0.01 0.01±0.01 0±0 暗氢氧化反应 0.02±0.01a 0±0b 0±0b 固氮作用 0.01±0.01 0.01±0.01 0±0 亚硝酸盐呼吸 0.14±0.06 0.22±0.09 0.1±0 溶纤作用 0.01±0.01 0.01±0.01 0±0 暗硫氧化反应 0.02±0.01 0.29±0.34 0.03±0.01 暗硫化合物氧化反应 0.16±0.16 0.35±0.41 0.03±0.01 锰氧化作用 0.01±0 0.01±0.01 0.01±0.01 发酵作用 2.97±2.23 0.91±0.56 1.46±0.19 有氧化能异养 29.71±4.4a 17.26±3.3ab 10.88±2.97b 人类病原体 0.04±0.02 0.06±0.05 0.05±0.01 人类肠道 0±0 0±0 0.01±0.01 哺乳动物肠道 0±0 0±0 0.01±0.01 动物寄生虫或共生体 0.45±0.15 0.41±0.44 0.27±0.05 芳烃降解 0.76±0.35 0.6±0.65 0.14±0.08 芳香族化合物降解 0.84±0.36 0.68±0.62 0.22±0.07 烃降解 0.83±0.38 0.63±0.68 0.14±0.09 铁呼吸 0.03±0.02 0.04±0.05 0.03±0.01 硝酸盐呼吸 0.15±0.06 0.23±0.09 0.11±0 硝酸盐还原作用 2.92±2.16 1.52±0.18 1.34±0.34 氮呼吸 0.15±0.06 0.23±0.09 0.11±0 细胞内寄生虫 0.85±0.27 2.01±1.16 1.52±0.3 捕食和寄生 0.62±0.37a 0.09±0.05b 0.1±0ab 蓝藻细菌 1.77±0.47ab 0.3±0.29b 29.29±10.27a 非产氧光自养型硫氧化 0.14±0.06 0.22±0.08 0.11±0.01 非产氧光能自养 0.14±0.06 0.22±0.08 0.11±0.01 产氧光能自养 1.77±0.47ab 0.3±0.29b 29.29±10.27a 光能自养 1.9±0.51ab 0.53±0.34b 29.4±10.26a 光能异养 0.14±0.06 0.22±0.09 0.1±0 光营养 1.91±0.51ab 0.53±0.35b 29.4±10.26a 尿素分解 0.1±0.06 0.14±0.11 0.26±0.17 化能异养 30.37±4.33a 17.91±3.36ab 11.43±3.2b 注:表中数据为平均值 ± 标准差;同行不同小写字母表示该功能的相对丰度在不同组别之间依据Kruskal-Wallis检验,在0.05水平存在显著差异(第1组: n=6; 第2组: n= 4; 第3组: n=2); 加粗字体表示相应数值在近岸站位相对高于远岸站位。 -
[1] 聂红涛, 陶建华. 渤海湾海岸带开发对近海水环境影响分析[J]. 海洋工程, 2008, 26(3): 44−50. doi: 10.3969/j.issn.1005-9865.2008.03.008Nie Hongtao, Tao Jianhua. Impact of coastal exploitation on the eco-environment of Bohai Bay[J]. The Ocean Engineering, 2008, 26(3): 44−50. doi: 10.3969/j.issn.1005-9865.2008.03.008 [2] Fuhrman J A. Microbial community structure and its functional implications[J]. Nature, 2009, 459(7244): 193−199. doi: 10.1038/nature08058 [3] Chapin Ⅲ F S, Sala O E, Burke I C, et al. Ecosystem consequences of changing biodiversity: experimental evidence and a research agenda for the future[J]. BioScience, 1998, 48(1): 45−52. doi: 10.2307/1313227 [4] 肖慧, 唐学玺, 乔旭东, 等. 渤海湾天津近岸表层沉积物中细菌丰度及其与环境因子的相关性研究[J]. 中国海洋大学学报:自然科学版, 2010, 40(6): 87−90, 160.Xiao Hui, Tang Xuexi, Qiao Xudong, et al. The abundance of benthic bacteria in Tianjin nearshore waters in the Bohai Bay and its correlation with environmental factors[J]. Periodical of Ocean University of China, 2010, 40(6): 87−90, 160. [5] 李清雪, 赵海萍, 陶建华. 渤海湾海域浮游细菌的生态研究[J]. 海洋技术学报, 2005, 24(4): 50−53, 56.Li Qingxue, Zhao Haiping, Tao Jianhua. Ecological research of heterotrophic bacterioplankton in the Bohai Bay waters[J]. Ocean Technology, 2005, 24(4): 50−53, 56. [6] Daniel B, François G, Pierre L. 数量生态学—R语言的应用[M]. 赖江山, 译. 北京: 高等教育出版社, 2014.Daniel B, François G, Pierre L. Nunerical Ecology with R[M]. Lai Jiangshan, trans. Beijing: High Education Press, 2014. [7] Willis K J, Whittaker R J. Species diversity-scale matters[J]. Science, 2002, 295(5558): 1245−1248. doi: 10.1126/science.1067335 [8] Ricklefs R E. A comprehensive framework for global patterns in biodiversity[J]. Ecology Letters, 2010, 7(1): 1−15. [9] Rajaniemi T K, Goldberg D E, Turkington R, et al. Quantitative partitioning of regional and local processes shaping regional diversity patterns[J]. Ecology Letters, 2006, 9(2): 121−128. doi: 10.1111/j.1461-0248.2005.00855.x [10] Qian Hong, White P S, Song J S. Effects of regional vs. ecological factors on plant species richness: an intercontinental analysis[J]. Ecology, 2007, 88(6): 1440−1453. doi: 10.1890/06-0916 [11] Xiong Jinbo, Ye Xiansen, Wang Kai, et al. Biogeography of the sediment bacterial community responds to a nitrogen pollution gradient in the East China Sea[J]. Applied and Environmental Microbiology, 2014, 80(6): 1919−1925. doi: 10.1128/AEM.03731-13 [12] Wang Kai, Ye Xiansen, Chen Heping, et al. Bacterial biogeography in the coastal waters of northern Zhejiang, East China Sea is highly controlled by spatially structured environmental gradients[J]. Environmental Microbiology, 2015, 17(10): 3898−3913. doi: 10.1111/1462-2920.12884 [13] Zhang Yao, Zhao Zihao, Dai Minhan, et al. Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea[J]. Molecular Ecology, 2014, 23(9): 2260−2274. doi: 10.1111/mec.12739 [14] 赵海萍, 李清雪, 陶建华. 渤海湾浮游细菌分布特征及环境影响因素[J]. 水资源保护, 2018, 34(5): 88−94. doi: 10.3880/j.issn.1004-6933.2018.05.14Zhao Haiping, Li Qingxue, Tao Jianhua. Distribution characteristics of bacterioplankton in Bohai Bay and its environmental influence factors[J]. Water Resources Protection, 2018, 34(5): 88−94. doi: 10.3880/j.issn.1004-6933.2018.05.14 [15] 刘鹏远, 陈庆彩, 胡晓珂. 渤海湾湾口表层沉积物中的核心细菌群落结构及其对环境因子的响应[J]. 微生物学通报, 2018, 45(9): 1940−1955.Liu Pengyuan, Chen Qingcai, Hu Xiaoke. Structure characteristics of core bacterial communities in surface sediments and analysis on their responses to environmental factors in the inlet of Bohai Bay[J]. Microbiology China, 2018, 45(9): 1940−1955. [16] Caporaso J G, Lauber C L, Walters W A, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(S1): 4516−4522. [17] Magoč T, Salzberg S L. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957−2963. doi: 10.1093/bioinformatics/btr507 [18] Caporaso J G, Kuczynski J, Stombaugh J, et al. QⅡME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335−336. doi: 10.1038/nmeth.f.303 [19] Edgar R C, Haas B J, Clemente J C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16): 2194−2200. doi: 10.1093/bioinformatics/btr381 [20] DeSantis T Z, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB[J]. Applied and Environmental Microbiology, 2006, 72(7): 5069−5072. doi: 10.1128/AEM.03006-05 [21] Caporaso J G, Bittinger K, Bushman F D, et al. PyNAST: a flexible tool for aligning sequences to a template alignment[J]. Bioinformatics, 2010, 26(2): 266−267. doi: 10.1093/bioinformatics/btp636 [22] Student. The elimination of spurious correlation due to position in time or space[J]. Biometrika, 1914, 10(1): 179−180. [23] Borcard D, Legendre P. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices[J]. Ecological Modelling, 2002, 153(1/2): 51−68. [24] Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation[J]. Genome Biology, 2011, 12(6): R60. doi: 10.1186/gb-2011-12-6-r60 [25] Louca S, Parfrey L W, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome[J]. Science, 2016, 353(6305): 1272−1277. doi: 10.1126/science.aaf4507 [26] Pommier T, Canbäck B, Riemann L, et al. Global patterns of diversity and community structure in marine bacterioplankton[J]. Molecular Ecology, 2007, 16(4): 867−880. [27] Bernhard A E, Colbert D, McManus J, et al. Microbial community dynamics based on 16S rRNA gene profiles in a Pacific Northwest estuary and its tributaries[J]. FEMS Microbiology Ecology, 2005, 52(1): 115−128. doi: 10.1016/j.femsec.2004.10.016 [28] Alonso-Sáez L, Gasol J M. Seasonal variations in the contributions of different bacterial groups to the uptake of low-molecular-weight compounds in northwestern Mediterranean coastal waters[J]. Applied and Environmental Microbiology, 2007, 73(11): 3528−3535. doi: 10.1128/AEM.02627-06 [29] Schattenhofer M, Fuchs B M, Amann R, et al. Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean[J]. Environmental Microbiology, 2009, 11(8): 2078−2093. doi: 10.1111/j.1462-2920.2009.01929.x [30] Alonso C, Gómez-Pereira P, Ramette A, et al. Multilevel analysis of the bacterial diversity along the environmental gradient Río de la Plata–South Atlantic Ocean[J]. Aquatic Microbial Ecology, 2010, 60(1): 57−72. [31] Bouvier T C, del Giorgio P A. Compositional changes in free-living bacterial communities along a salinity gradient in two temperate estuaries[J]. Limnology and Oceanography, 2002, 47(2): 453−470. doi: 10.4319/lo.2002.47.2.0453 [32] Crump B C, Armbrust E V, Baross J A. Phylogenetic analysis of particle-attached and free-living bacterial communities in the columbia river, its estuary, and the adjacent coastal ocean[J]. Applied and Environmental Microbiology, 1999, 65(7): 3192−3204. [33] Gómez-Pereira P R, Fuchs B M, Alonso C, et al. Distinct flavobacterial communities in contrasting water masses of the north Atlantic Ocean[J]. The ISME Journal, 2010, 4(4): 472−487. doi: 10.1038/ismej.2009.142 [34] 侯三玲, 曹海鹏, 李洋, 等. 噬菌弧菌H2的分离鉴定与噬菌活性分析[J]. 环境污染与防治, 2014, 36(1): 19−23, 27. doi: 10.3969/j.issn.1001-3865.2014.01.005Hou Sanling, Cao Haipeng, Li Yang, et al. Isolation, identification of Bacteriovorax sp. H2 and its lysis activity analysis[J]. Environmental Pollution and Control, 2014, 36(1): 19−23, 27. doi: 10.3969/j.issn.1001-3865.2014.01.005 [35] 马英, 焦念志. 聚球藻(Synechococcus)分子生态学研究进展[J]. 自然科学进展, 2004, 14(9): 967−972. doi: 10.3321/j.issn:1002-008X.2004.09.002Ma Ying, Jiao Nianzhi. Advances in molecular ecology of Synechococcus[J]. Progress in Natural Science, 2004, 14(9): 967−972. doi: 10.3321/j.issn:1002-008X.2004.09.002 [36] 王晨阳. 海洋聚球蓝细菌(Synechococcus)的纯化鉴定及生理和生态分布特征[D]. 北京: 中国科学院海洋研究所, 2006.Wang Chenyang. Physiological, phylogenetic and ecological characteristics of cultured isolates of marine Synechococcus genus[D]. Beijing: Institute of Oceanology, Chinese Academy of Sciences, 2006. [37] He Yaodong, Sen B, Zhou Shuangyan, et al. Distinct seasonal patterns of bacterioplankton abundance and dominance of phyla α-Proteobacteria and Cyanobacteria in Qinhuangdao coastal waters off the Bohai Sea[J]. Frontiers in Microbiology, 2017, 8: 1579. doi: 10.3389/fmicb.2017.01579 [38] 韩哲一. 聚球藻(Synechococcus cf. elongatus)生长与海区再生氮的定量关系研究[D]. 厦门: 厦门大学, 2017.Han Zheyi. Research on quantitative relationship between the growth of Synechococcus cf. elongatus and nitrogen regeneration in the sea[D]. Xiamen: Xiamen University, 2017. [39] 吴世凯, 谢平, 倪乐意, 等. 长江中下游地区湖泊中蓝藻及其与氮磷浓度的关系[J]. 水生态学杂志, 2014, 35(3): 19−25. doi: 10.3969/j.issn.1674-3075.2014.03.003Wu Shikai, Xie Ping, Ni Leyi, et al. Cyanobacteria genus and its relationship with nitrogen and phosphorus concentration in lakes along the middle and lower reaches of the Yangtze river[J]. Journal of Hydroecology, 2014, 35(3): 19−25. doi: 10.3969/j.issn.1674-3075.2014.03.003 [40] Seo J H, Kang I, Yang S J, et al. Characterization of spatial distribution of the bacterial community in the South Sea of Korea[J]. PLoS One, 2017, 12(3): e0174159. doi: 10.1371/journal.pone.0174159 [41] Paerl R W, Johnson K S, Welsh R M, et al. Differential distributions of Synechococcus subgroups across the california current system[J]. Frontiers in Microbiology, 2011, 2: 59. [42] 刘晓辉. 长江口及邻近海域海水细菌多样性及时空分布规律研究[D]. 舟山: 浙江海洋大学, 2017.Liu Xiaohui. Temporal and spatial distribution of bacterial diversity in seawater of Changjiang Estuary and adjacent areas[D]. Zhoushan: Zhejiang Ocean University, 2017. [43] Richa K, Balestra C, Piredda R, et al. Distribution, community composition, and potential metabolic activity of bacterioplankton in an urbanized mediterranean sea coastal zone[J]. Applied and Environmental Microbiology, 2017, 83(17): e00494−17. [44] 赵三军, 肖天, 李洪波, 等. 胶州湾聚球菌(Synechococcus spp.)蓝细菌的分布及其对初级生产力的贡献[J]. 海洋与湖沼, 2005, 36(6): 534−540. doi: 10.3321/j.issn:0029-814X.2005.06.007Zhao Sanjun, Xiao Tian, Li Hongbo, et al. Distribution of Synechococcus spp in Jiaozhou Bay[J]. Oceanologia et Limnologia Sinica, 2005, 36(6): 534−540. doi: 10.3321/j.issn:0029-814X.2005.06.007 [45] Zhou Jizhong, He Zhili, Yang Yunfeng, et al. High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats[J]. mBio, 2015, 6(1): e02288−14. [46] 位光山. 黄河入海口沉积物和水体中微生物群落的比较研究[D]. 泰安: 山东农业大学, 2015.Wei Guangshan. Comparison of microbial communities between sediments and water columns from the yellow river estuary[D]. Tai’an: Shandong Agricultural University, 2015. [47] Vieira R P, Gonzalez A M, Cardoso A M, et al. Relationships between bacterial diversity and environmental variables in a tropical marine environment, Rio de Janeiro[J]. Environmental Microbiology, 2008, 10(1): 189−199. [48] Borcard D, Legendre P. Environmental control and spatial structure in ecological communities: an example using oribatid mites (Acari, Oribatei)[J]. Environmental and Ecological Statistics, 1994, 1(1): 37−61. doi: 10.1007/BF00714196 [49] Dray S, Legendre P, Peres-Neto P R. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM)[J]. Ecological Modelling, 2006, 196(3/4): 483−493. [50] Blanchet F G, Legendre P, Borcard D. Modelling directional spatial processes in ecological data[J]. Ecological Modelling, 2008, 215(4): 325−336. doi: 10.1016/j.ecolmodel.2008.04.001 [51] Hedlund B P, Geiselbrecht A D, Bair T J, et al. Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov[J]. Applied and Environmental Microbiology, 1999, 65(1): 251−259. [52] Meyer S T, Ebeling A, Eisenhauer N, et al. Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity[J]. Ecosphere, 2016, 7(12): e016179. -