Simulation study on the carbon fixed and stored by intertidal seaweeds in temperate waters in Dalian
-
摘要: 底栖海藻是海洋生态系统中重要的初级生产力,开展其固碳和储碳机制研究,有利于提高对我国海域海洋固碳和储碳潜力的认识。本文基于海区条件的模拟,开展了大连海域潮间带优势海藻的日固碳量、日呼吸量和日有机碳释放量的测定,结合海区生物量的调查,阐述了3个海藻床潮间带海藻固碳和储碳的季节变化规律。结果显示:在海藻固碳能力方面,绿藻类的固碳能力最强,褐藻类次之,红藻类最低。大连海域潮间带海藻的固碳量、储碳量和有机碳释放量在12月至5月处于较高水平,6月至11月较低,平均每个海藻床潮间带区域年固碳量和年有机碳释放量分别为1.72×105 g/a和2.1×104 g/a。潮间带海藻月固碳量是储碳量的1.7倍。Abstract: To better understand the potential of carbon fixation in China Sea, it is necessary to conduct the researches on the mechanism of carbon fixed and stored by benthic seaweeds, the important primary productivities in marine ecosystems. In this paper, some dominant seaweeds from intertidal zones in Dalian were measured on the daily fixed and respired carbon, and daily release of organic carbon. Furthermore, seasonal variation of carbon fixed and stored by intertidal seaweeds from three seaweed beds in Dalian were elucidated, combined with the measurements of the biomass. The results showed that green algae had the strongest capacity in carbon fixation, followed by brown algae and red algae. The carbon fixed and stored, and organic carbon released by intertidal seaweeds in Dalian were higher in December-May, and lower in June-November. The annual total carbon fixed, and organic carbon released by intertidal seaweeds of each seaweed bed were 1.72×105 g/a and 2.1×104 g/a respectively. The amount of monthly fixed carbon was 1.7 times that of stored carbon.
-
Key words:
- benthic seaweeds /
- carbon fixation /
- carbon storage
-
表 1 各供试海藻的反应条件
Tab. 1 Reaction conditions of the tested seaweeds
试验种类 光照梯度/µmol·m−2·s−1 温度/℃ 反应时间/h 绿藻 孔石莼 18.4、92、184、276、368 8±0.5,15±0.5,19±0.5 1.2 缘管浒苔 18.4、92、184、276、368 6±0.5,8±0.5 1.2 袋礁膜 18.4、92、184、276 3±0.5,8±0.5 1.5 盘苔 18.4、92、184、276、368、460 3±0.5,8±0.5 1.0 褐藻 萱藻 18.4、92、184 3±0.5,8±0.5 2.0 鼠尾藻 18.4、92、184 8±0.5,15±0.5 2.0 红藻 马泽藻 18.4、92、184 3±0.5,9±0.5,15±0.5 2.0 松节藻 18.4、92、184 8±0.5,15±0.5,22±0.5 2.0 楔基角叉菜 18.4、92、184 3±0.5,8±0.5 2.0 单条胶粘藻 18.4、92、184 3±0.5,6±0.5 2.0 鸭毛藻 18.4、92、184 15±0.5,22±0.5 2.0 表 2 各供试海藻日固碳量、有机碳日释放量和含碳率
Tab. 2 Daily carbon fixation, release of organic carbon and carbon content rate of tested seaweeds
供试海藻 日净固碳量/mg·d−1·g−1 DOC日释放量/mg·d−1·g−1 POC日释放量/mg·d−1·g−1 含碳率/% 绿藻 孔石莼 3.41±0.29 0.689±0.043 0.144±0.118 30.68±0.42 缘管浒苔 7.07±1.71 0.670±0.048 0.226±0.067 27.31±0.41 袋礁膜 6.36±1.38 1.502±0.074 0.302±0.151 29.33±0.45 盘苔 2.52±0.53 0.372±0.022 0.098±0.012 22.75±0.37 褐藻 鼠尾藻 2.51±0.46 0.238±0.046 0.134±0.029 33.49±1.09 萱藻 1.68±0.28 0.110±0.010 0.077±0.007 37.06±0.75 红藻 马泽藻 1.08±0.11 0.103±0.017 0.014±0.007 25.77±0.3 楔基角叉菜 0.48±0.03 0.067±0.014 0.034±0.002 28.65±0.41 松节藻 0.72±0.10 0.060±0.002 0.046±0.004 25.46±0.49 单条胶粘藻 0.72±0.12 0.060±0.010 0.014±0.005 32.06±0.26 鸭毛藻 0.24±0.06 0.029±0.005 0.019±0.002 22.39±0.56 -
[1] Zeebe R E, Gladrow W D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes: Equilibrium, Kinetics, Isotopes[M]. Elsevier, 2001. [2] Caldeira K, Wickett M E. Oceanography: Anthropogenic carbon and ocean pH[J]. Nature, 2003, 425(6956): 365. doi: 10.1038/425365a [3] Brierley A S, Kingsford M J. Impacts of climate change on marine organisms and ecosystems[J]. Current Biology, 2009, 19(14): 602−614. doi: 10.1016/j.cub.2009.05.046 [4] 王阳. 低碳经济发展的国际经验与中国的发展策略研究[J]. 南京财经大学学报, 2010(2): 11−14.WangYang. Low-carbon economy development in China[J]. Journal of Nanjing University of Finance and Economicsa, 2010(2): 11−14. [5] Nellemann C, Corcoran E, Duarte C M, et al. Blue carbon. A rapid response assessment[R]. United Nations Environment Programme, GRID-Arendal, 2009. [6] Sabine C L, Feely R A, Gruber N, et al. The Oceanic Sink for Anthropogenic CO2[J]. Science, 2004, 305: 367−371. doi: 10.1126/science.1097403 [7] Balino B M, Fasham M J R, Bowles M C. Ocean biogeochemistry and global change: JGOFS research highlights 1988-2000[J]. IGBP Science, 2001, 2: 1−32. [8] Battle, M, Bender M L, Tans P P, et al. Global carbon sinks and their variability inferred from atmospheric O2 and δ13C[J]. Science, 2000, 287: 2467−2470. doi: 10.1126/science.287.5462.2467 [9] 赵玉灵. 近30年来我国海岸线遥感调查与演变分析[J]. 国土资源遥感, 2010( S86): 174−177. doi: 10.6046/gtzyyg.2010.s1.36Zhao Yuling. The remote sensing dynamic monitoring of China’s shoreline evolution in the past 30 years[J]. Remote Sensing for Land and Resources, 2010( S86): 174−177. doi: 10.6046/gtzyyg.2010.s1.36 [10] Smith J V. Marine macrophytes as a global carbon sink[J]. Science, 1981, 211(4484): 838−840. doi: 10.1126/science.211.4484.838 [11] 纪建悦, 王萍萍. 我国海水养殖业碳汇能力测度及其影响因素分解研究[J]. 海洋环境科学, 2015, 34(6): 871−878.Ji Jianyue, Wang Pingping. Research on China’s mariculture carbon sink capacity and influencing factors[J]. Marine Environmental Science, 2015, 34(6): 871−878. [12] 周伟男. 硇洲岛岩礁带底栖生物的群落结构及大型海藻的碳汇作用[D]. 广东: 湛江海洋大学, 2013: 10-52.Zhou Weinan. The macrobenthos community structure and effects on the carbon sink of macroalgae in the intertidal rocky zone in Naozhou Island[D]. Guangdong: Guangdong Ocean University, 2013: 10−52. [13] 严立文, 黄海军, 陈纪涛, 等. 我国近海藻类养殖的碳汇强度估算[J]. 海洋科学进展, 2011, 29(4): 537−545. doi: 10.3969/j.issn.1671-6647.2011.04.014Yan Liwen, Huang Haijun, Chen Jitao, et al. Estimation of carbon sink capacity of algal mariculture in the coastal areas of China[J]. Advancs in Marine Science, 2011, 29(4): 537−545. doi: 10.3969/j.issn.1671-6647.2011.04.014 [14] 张继红, 方建光, 唐启升. 中国浅海贝藻养殖对海洋碳循环的贡献[J]. 地球科学进展, 2005, 20(3): 359−36. doi: 10.3321/j.issn:1001-8166.2005.03.014Zhang Jihong, Fang Jianguang, Tang Qisheng. The contribution of shellfish and seaweed mariculture in China to the carbon cycle of coastal ecosystem[J]. Advances in Earth Science, 2005, 20(3): 359−36. doi: 10.3321/j.issn:1001-8166.2005.03.014 [15] 岳冬冬. 海带养殖结构变动与海藻养殖碳汇量核算的情景分析[J]. 福建农业学报, 2012, 27(4): 432−436. doi: 10.3969/j.issn.1008-0384.2012.04.022Yue Dongdong. Correlation between kelp aquaculture and carbon sinks[J]. Fujian Journal of Agricultural Sciences, 2012, 27(4): 432−436. doi: 10.3969/j.issn.1008-0384.2012.04.022 [16] 权伟, 应苗苗, 康华靖, 等. 基于时间序列模型的洞头大型藻类碳汇强度预测分析[J]. 中国农学通报, 2014, 30(8): 63−67. doi: 10.11924/j.issn.1000-6850.2013-1550Quan Wei, Ying Miaomiao, Kang Huajing, et al. Carbon sink capacity forecast of macroscopic algae in the coastal areas of Dongtou county based on time series model[J]. Chinese Agricultural Science Bulletin, 2014, 30(8): 63−67. doi: 10.11924/j.issn.1000-6850.2013-1550 [17] 宋金明, 李学刚, 袁华茂, 等. 中国近海生物固碳强度与潜力[J]. 生态学报, 2008, 28(2): 551−558. doi: 10.3321/j.issn:1000-0933.2008.02.013Song Jinming, Li Xuegang, Yuan Huamao, et al. Carbon fixed by phytoplankton and cultured algae in China coastal seas[J]. Acta Ecological Sinica, 2008, 28(2): 551−558. doi: 10.3321/j.issn:1000-0933.2008.02.013 [18] 焦念志. 海洋固碳与储碳——并论微型生物在其中的重要作用[J]. 中国科学: 地球科学, 2012, 42(10): 1473−1486.Jiao Nianzhi. Carbon fixation and sequestration in the ocean, with special reference to the microbial carbon pump[J]. Science China Earth Sciences, 2012, 42(10): 1473−1486. [19] Ogawa H, Tanoue E. Dissolved organic matter in oceanic waters[J]. Journal of Oceanography, 2003, 59: 129−147. doi: 10.1023/A:1025528919771 [20] Fogg G E, Boalch G T. Extracellular products in pure cultures of a brown Alga[J]. Nature, 1958, 181: 789−790. doi: 10.1038/181789a0 [21] Fogg G E. Release of glycollate from tropical marine plants[J]. Australian Journal of Plant Physiology, 1976, 3(1): 57−61. [22] Fogg G E. Extracellular products of algae[J]. Oceanography and Marine Biology: an Annual Review, 1966, 4: 195−212. [23] Lefèvre M. Extracellular products of algae[M]. Algae and Man: Springer, 1964: 337-367. [24] 岳国峰, 王金霞, 朱明远, 等. 藻类无机碳营养的研究进展(Ⅰ)——研究起源及研究方法[J]. 海洋科学, 2003, 27(5): 15−17. doi: 10.3969/j.issn.1000-3096.2003.05.005Yue Guofeng, Wang Jinxia, Zhu Mingyuan, et al. Progress of inorganic carbon acquisition by algae (Ⅰ): origin and methods of the studies[J]. Marine Science, 2003, 27(5): 15−17. doi: 10.3969/j.issn.1000-3096.2003.05.005 [25] 邵魁双, 李煕宜. 大连海区潮间带底栖海藻群落的季节变化[J]. 大连水产学院学报, 2000, 15(1): 29−34.Shao Kuishuang, Li Xiyi. Seasonal variation of intertidal benthic seaweed in Dalian[J]. Journal of Dalian Fisheries University, 2000, 15(1): 29−34. -