Transcriptome analysis of marine microalga Emiliania huxleyi in response to virus infection
-
摘要: 海洋球石藻Emiliania huxleyi及其特异性裂解病毒E. huxleyi virus (EhVs)在调节海洋碳、硫循环及全球气候变化中起着重要作用,也是开展真核生物病毒–宿主相互作用研究的良好模型系统之一。为了探究病毒感染条件下E. huxleyi基因表达水平的变化,以海洋球石藻E. huxley–BOF 92及其专一性裂解病毒EhV-99B1为研究对象,利用Illumina HiSeq 2000高通量测序技术,分别对E. huxleyi病毒感染组(Exp)和非感染对照组(Con)6 h和45 h的藻细胞样品进行转录组测序分析。共得到32 909条平均长度为1 153 bp的基因。病毒感染6 h和45 h分别得到2 617和5 229个差异表达基因,其中共差异表达基因465个。随机选取10条差异表达基因,采用qRT-PCR进行实验验证,结果证实转录组分析可靠。GO功能注释和KEGG通路富集,发现大量基因与氧化应激反应、脂类代谢、碳水化合物代谢及信号转导等代谢过程相关,其中变化最显著的是谷胱甘肽代谢途径。从病毒感染球石藻转录组中筛选出部分与氧化应激反应相关的基因,其中9个基因显著上调,11个基因显著下调,表明宿主能够通过体内的氧化应激反应响应病毒胁迫。Abstract: Emiliania huxleyi, the numerically dominant coccolithophore in the modern oceans and its specific lytic virus EhV exert a critical impact upon the oceanic carbon, sulfur cycle and global climate, thus serving as a key host-pathogen model system. Despite their impact on biogeochemical cycling, the transcriptional dynamics of these important oceanic events is still poorly understood. To understand the host-virus interaction in E. huxleyi-EhV system, the transcriptome of E. huxleyi BOF92 involved in virus infection was investigated by using Illumina HiSeq 2 000 high-throughput sequencing technology. Two cDNA libraries, generated 6 h and 45 h after viral infection (Exp) were compared with two libraries from the corresponding times uninfected cultures (Con). A total of 32 909 unigenes with an average length of 1 153 bp were generated. Totally 2 617 and 5 229 differentially expressed genes (DEGs) associated with viral infection were identified in 6 hpi and 45 hpi, respectively, among which 465 genes were the common DEGs in the two time points. Ten DEGs were random selected for quantitative RT-PCR (qRT-PCR) analysis, and the results confirmed that the transcriptome analysis was reliable. Furthermore, the DEGs were subject to GO and KEGG enrichment analysis. The results showed that most of the DEGs were involved in oxidation-reduction reactions, glutathione metabolism, lipid metabolism, carbohydrate metabolism and signal transduction. Some of the reactive oxygen species (ROS) scavenging genes were screened out, in which 9 genes were up-regulated and 11 genes were down-regulated. These results suggested that ROS signaling molecules might play a central role during host-virus interaction.
-
图 5 EhV感染重塑宿主谷胱甘肽代谢通路图
OPase:羟脯氨酸酶;MAP:膜氨肽酶I;GSH:γ-谷氨酰半胱氨酸合成酶;GGT:γ-谷氨酰转移酶;GSHS:谷胱甘肽合成酶;GR:胱甘肽还原酶;G6PDH:葡萄糖-6-磷酸脱氢酶;GPx:谷胱甘肽过氧化物酶;GDA:谷胱甘肽脱氢酶;SSase:亚精胺合成酶;ODase:鸟氨酸脱羧酶。基因名称框的颜色表示基因表达水平的倍数变化,log2 FC > 0表示上调,log2 FC < 0表示上调
Fig. 5 Glutathione metabolic pathways responding to virus infection
OPase: oxoprolinase; MAP: membrane aminopeptidase I; GSH: γ-glutamylcysteine synthetase; GGT: γ-glutamyl transferase; GSHS: glutathione synthetase; GR: glutathione reductase; G6PDH: glucose-6-phosphate dehydrogenase; GPx: glutathione peroxidase; GDA: glutathione dehydrogenase; SSase: spermidine synthase; ODase: ornithine decarboxylase. Color filling of gene name box depicts the fold change of expression levels of the gene based on RNA-seq data, log2 FC > 0 indicating up- regulation, log2 FC < 0 indicating down- regulation.
表 1 实验所用的引物
Tab. 1 Primers used in the experiments
基因 正向引物序列 (5′-3′) 反向引物序列 (5′–3′) β-Tublin (17257729) TCATGTGCTCCTACTCGGTCTTC TTCAGCGTGCGGAAACAGA ATG13 (17261891) GCGAAACTGCGTCCAGAAGA CGCTCGAGAAGCACGAGATG MC1 (17277722) TTATCAGCGACGAGGACAGTTC GCTCAACATGCCCTCCCTAG MC2 (17251088) TGGGGCTTTTCAGAGGAAGAT CCGTCGCCTGAGTAAAAGATAA MC3 (17269785) CGACTGGCTGAATGAGGAGAA ACCTTGTGGCTCTTGAGCATG MC4 (17283241) TCGCTGATGGTCTTTATGGA TCCCTCGGAGGTCTCGTA hSPT (17255778) TCTCGGACACGCTCAACCA CCCTCGACGATGATGATGATC ATG3 (17287351) TCAAGACAGTCACCCTCGAGTC GGATGACGGAGGAGATGAACT FADS (17253431) CTTCTCCGAGATGCCCTTCTA CAGTAGCCGAGAAACTCGGA AMO (17252058) GCTTGTGGTAACCTTCGTCC GTGACCGCGTGAAACCAGT DLD2 (19046437) AATCATCGGGTCGGGGTAC CATGGGGCTGGGCTACTAA 表 2 测序数据量统计结果
Tab. 2 Statistics results of the sequencing data
样品 原始数据大小/bp 原始读段量 有效数据大小/bp 有效读段量 有效数据比率/% Con_45_1 1 206 811 650 24 136 233 1 197 441 650 23 948 833 99.22 Con_45_2 1 206 812 550 241 362 51 1 197 176 200 23 943 524 99.20 Con_6_1 1 200 867 450 24 017 349 1 194 086 550 23 881 731 99.43 Con_6_2 1 206 840 250 24 136 805 1 200 300 350 24 006 007 99.45 Exp_45_1 1 206 808 350 24 136 167 1 200 167 600 24 003 352 99.44 Exp_45_2 1 206 837 050 24 136 741 1 200 482 550 24 009 651 99.47 Exp_6_1 1 206 850 000 24 137 000 1 200 301 150 24 006 023 99.45 Exp_6_2 1 018 654 150 20 373 083 1 013 573 600 20 271 472 99.50 表 3 有效读段与参考基因组比对结果
Tab. 3 Clean reads mapped to reference genome
样品 总读段量 总映射读段占比/% 单一位点映射占比/% 多位点映射占比/% 未映射读段占比/% Con_45_1 23 948 833 78.52 30.71 47.81 21.48 Con_45_2 23 943 524 80.59 30.67 49.92 19.42 Con_6_1 23 881 731 62.24 24.60 37.64 37.77 Con_6_2 24 006 007 76.02 31.18 44.84 23.99 Exp_45_1 24 003 352 42.84 16.69 26.15 57.16 Exp_45_2 24 009 651 53.74 20.94 32.80 46.26 Exp_6_1 24 006 023 75.69 30.36 45.33 24.31 Exp_6_2 20 271 472 75.19 30.54 44.65 24.81 表 4 病毒感染6 h显著差异表达的氧化应激反应酶
Tab. 4 Oxidative stress enzymes that are significantly differentially expressed in 6 hpi
基因ID log2 (倍数) P 描述 jgi|Emihu1|434150 −1.65 2.79×10−13 L-ascorbate peroxidase L-抗坏血酸过氧化物酶 jgi|Emihu1|444342 −2.36 3.57×10−19 L-ascorbate peroxidase L-抗坏血酸过氧化物酶 jgi|Emihu1|63449 9.58 1.24×10−20 thioredoxin reductase 硫氧还蛋白还原酶 jgi|Emihu1|74843 −11.38 1.39×10−15 Thioredoxin 硫氧还蛋白 jgi|Emihu1|109275 −6.71 1.30×10−3 glutathione S-transferase 谷胱甘肽 S-转移酶 jgi|Emihu1|447453 −1.59 5.98×10−6 glutathione-S-transferase 谷胱甘肽 S-转移酶 jgi|Emihu1|439607 7.16 2.10×10−5 glutathione dehydrogenase 谷胱甘肽脱氢酶 jgi|Emihu1|115948 −1.50 1.65×10−5 glutathionedehydrogenase 谷胱甘肽脱氢酶 注:hpi为感染后小时数。 表 5 病毒感染45 h显著差异表达的氧化应激反应酶
Tab. 5 Oxidative stress enzymes that are significantly differentially expressed in 45 hpi
基因ID log2 (倍数) P 描述 jgi|Emihu1|103927 8.21 6.41×10−4 glutathione peroxidase 谷胱甘肽过氧化物酶 jgi|Emihu1|433534 6.03 1.87×10−16 glutathione peroxidase 谷胱甘肽过氧化物酶 jgi|Emihu1|464198 1.24 4.00×10−3 peroxidase/catalase 过氧化物酶/过氧化氢酶 jgi|Emihu1|241133 −8.61 1.89×10−5 cytochrome c peroxidase 细胞色素c过氧化物酶 jgi|Emihu1|74843 11.08 4.51×10−12 thioredoxin 硫氧还蛋白 jgi|Emihu1|59424 10.06 7.34×10−6 thioredoxin 硫氧还蛋白 jgi|Emihu1|198128 −1.25 5.00×10−4 thioredoxin 硫氧还蛋白 jgi|Emihu1|66962 1.49 6.48×10−5 glutathione S-transferase 谷胱甘肽 S-转移酶 jgi|Emihu1|446089 1.31 2.33×10−7 glutathione S-transferase 谷胱甘肽 S-转移酶 jgi|Emihu1|109275 −8.32 1.89×10−5 glutathione S-transferase 谷胱甘肽 S-转移酶 jgi|Emihu1|63987 −1.22 1.18×10−9 glutathione reductase 谷胱甘肽还原酶 jgi|Emihu1|63016 −1.03 7.00×10−3 glutathione reductase 谷胱甘肽还原酶 注:hpi为感染后小时数。 -
[1] Pagarete A, Corguillé G L, Tiwari B, et al. Unveiling the transcriptional features associated with coccolithovirus infection of natural Emiliania huxleyi blooms[J]. FEMS Microbiology Ecology, 2011, 78(3): 555−564. doi: 10.1111/j.1574-6941.2011.01191.x [2] Feldmesser E, Rosenwasser S, Vardi A, et al. Improving transcriptome construction in non-model organisms: integrating manual and automated gene definition in Emiliania huxleyi[J]. BMC Genomics, 2014, 15(1): 1−16. doi: 10.1186/1471-2164-15-1 [3] Sheyn U, Rosenwasser S, Lehahn Y, et al. Expression profiling of host and virus during a coccolithophore bloom provides insights into the role of viral infection in promoting carbon export[J]. ISME Journal, 2018, 8(3): 704−713. [4] Jakob I, Weggenmann F, Posten C. Cultivation of Emiliania huxleyi for coccolith production[J]. Algal Research, 2018, 31: 47−59. doi: 10.1016/j.algal.2018.01.013 [5] Tsuji Y, Yamazaki M, Suzuki I, et al. Quantitative analysis of carbon flow into photosynthetic products functioning as carbon storage in the marine Coccolithophore, Emiliania huxleyi[J]. Marine Biotechnology, 2015, 17(4): 428−440. doi: 10.1007/s10126-015-9632-1 [6] Schatz D, Shemi A, Rosenwasser S, et al. Hijacking of an autophagy-like process is critical for the life cycle of a DNA virus infecting oceanic algal blooms[J]. New Phytologist, 2015, 204(4): 854−863. [7] Brussaard C P. Viral control of phytoplankton populations-a review1[J]. Journal of Eukaryotic Microbiology, 2004, 51(2): 125−138. doi: 10.1111/j.1550-7408.2004.tb00537.x [8] Martínez J M, Schroeder D C, Wilson W H. Dynamics and genotypic composition of Emiliania huxleyi and their co-occurring viruses during a coccolithophore bloom in the North Sea[J]. FEMS Microbiology Ecology, 2012, 81(2): 315−323. doi: 10.1111/j.1574-6941.2012.01349.x [9] Schroeder D C, Oke J, Malin G, et al. Coccolithovirus (phycodnaviridae): characterisation of a new large dsDNA algal virus that infects Emiliania huxleyi[J]. Archives of Virology, 2002, 147(9): 1685−1698. doi: 10.1007/s00705-002-0841-3 [10] Wilson W H, Schroeder D C, Allen M J, et al. Complete genome sequence and lytic phase transcription profile of a coccolithovirus[J]. Science, 2005, 309(5737): 1090−1092. doi: 10.1126/science.1113109 [11] Malitsky S, Ziv C, Rosenwasser S, et al. Viral infection of the marine alga Emiliania huxleyi triggers lipidome remodeling and induces the production of highly saturated triacylglycerol[J]. New Phytologist, 2016, 210(1): 88−96. doi: 10.1111/nph.13852 [12] Ruiz E, Oosterhof M, Sandaa R, et al. Emerging interaction patterns in the Emiliania huxleyi-EhV system[J]. Viruses, 2017, 9(3): 61−75. doi: 10.3390/v9030061 [13] Rosenwasser S, Ziv C, Van Creveld S G, et al. Virocell metabolism: metabolic innovations during host-virus interactions in the ocean[J]. Trends in Microbiology, 2016, 24(10): 821−832. doi: 10.1016/j.tim.2016.06.006 [14] Kegel J U, Blaxter M, Allen M J, et al. Transcriptional host-virus interaction of Emiliania huxleyi (haptophyceae) and EhV-86 deduced from combined analysis of expressed sequence tags and microarrays[J]. European Journal of Phycology, 2010, 45(1): 1−12. doi: 10.1080/09670260903349900 [15] Kimmance S A, Allen M J, Pagarete A, et al. Reduction in photosystem Ⅱ efficiency during a virus-controlled Emiliania huxleyi bloom[J]. Marine Ecology Progress Series, 2014, 495: 65−76. doi: 10.3354/meps10527 [16] Rosenwasser S, Mausz M A, Schatz D, et al. Rewiring host lipid metabolism by large viruses determines the fate of Emiliania huxleyi, a bloom-forming alga in the ocean[J]. Plant Cell, 2014, 26(6): 2689−2707. doi: 10.1105/tpc.114.125641 [17] Pagarete A, Allen M J, Wilson W H, et al. Host–virus shift of the sphingolipid pathway along an Emiliania huxleyi bloom: survival of the fattest[J]. Environ Microbiol, 2009, 11(11): 2840−2848. doi: 10.1111/j.1462-2920.2009.02006.x [18] Ziv C, Malitsky S, Othman A, et al. Viral serine palmitoyltransferase induces metabolic switch in sphingolipid biosynthesis and is required for infection of a marine alga [Microbiology][J]. Proceeding of the National Academy of Sciences, 2016, 113(13): E1907. doi: 10.1073/pnas.1523168113 [19] Rose S L, Fulton J M, Brown C M, et al. Isolation and characterization of lipid rafts in Emiliania huxleyi: a role for membrane microdomains in host-virus interactions[J]. Environmental Microbiology, 2014, 16(4): 1150−1166. doi: 10.1111/1462-2920.12357 [20] Sheyn U, Rosenwasser S, Ben-Dor S, et al. Modulation of host ROS metabolism is essential for viral infection of a bloom-forming coccolithophore in the ocean[J]. The ISME Journal, 2016, 10(7): 1742−1754. doi: 10.1038/ismej.2015.228 [21] Vardi A, Haramaty L, Van Mooy B A S, et al. Host-virus dynamics and subcellular controls of cell fate in a natural coccolithophore population[J]. Proceedings of the National Academy of Sciences, 2012, 109(47): 19327−19332. doi: 10.1073/pnas.1208895109 [22] Bidle K D. Programmed cell death in unicellular phytoplankton[J]. Current Biology, 2016, 26(13): R594−R607. doi: 10.1016/j.cub.2016.05.056 [23] Bidle K D. The molecular ecophysiology of programmed cell death in marine phytoplankton[J]. Annual Review of Marine Science, 2015, 7(7): 341. [24] Liu J W, Cai W C, Fang X, et al. Virus-induced apoptosis and phosphorylation form of metacaspase in the marine coccolithophorid Emiliania huxleyi[J]. Archives of Microbiology, 2018, 200(3): 413−422. doi: 10.1007/s00203-017-1460-4 [25] Langmead B, Trapnell C, Pop M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[J]. Genome Biology, 2009, 10(3): R25. doi: 10.1186/gb-2009-10-3-r25 [26] Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357−360. doi: 10.1038/nmeth.3317 [27] Demey C N, Li B. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12(1): 323−323. doi: 10.1186/1471-2105-12-323 [28] 张丽丽, 张富春. 短期盐胁迫下盐穗木的转录组分析[J]. 植物研究, 2018, 38(1): 91−99. doi: 10.7525/j.issn.1673-5102.2018.01.011Zhang Lili, Zhang Fuchun. Transcriptomic analysis of the Halostachys caspica in response to short-term salt stress[J]. Plant Research, 2018, 38(1): 91−99. doi: 10.7525/j.issn.1673-5102.2018.01.011 [29] Bochenek M, Etherington G J, Koprivova A, et al. Transcriptome analysis of the sulfate deficiency response in the marine microalga Emiliania huxleyi[J]. New Phytologist, 2013, 199(3): 650−662. doi: 10.1111/nph.12303 [30] Read B A, Kegel J, Klute M J, et al. Pan genome of the phytoplankton Emiliania underpins its global distribution[J]. Nature, 2013, 499(7457): 209−213. doi: 10.1038/nature12221 [31] Von Dassow P, John U, Ogata H, et al. Life-cycle modification in open oceans accounts for genome variability in a cosmopolitan phytoplankton[J]. ISME Journal, 2015, 9(6): 1365−1377. doi: 10.1038/ismej.2014.221 [32] Dassow P V, Ogata H, Probert I, et al. Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell[J]. Genome Biology, 2009, 10(10): R114. doi: 10.1186/gb-2009-10-10-r114 [33] Fulton J M, Fredricks H F, Bidle K D, et al. Novel molecular determinants of viral susceptibility and resistance in the lipidome of Emiliania huxleyi[J]. Environmental Microbiology, 2014, 16(4): 1137−1149. doi: 10.1111/1462-2920.12358 -