A study on particulate nitrogen isotope distribution, isotope characteristics and controlling factors in the southern Yellow Sea in summer
-
摘要: 黄海是人类活动影响显著的半封闭陆架边缘海,在夏季存在特征鲜明的冷水团结构。为研究南黄海颗粒态氮的循环转化过程,本文通过分析2016年夏季南黄海水体颗粒物和表层沉积物的碳、氮含量及同位素,探讨南黄海近岸海域和冷水团海域颗粒物和表层沉积物氮含量、同位素的分布差异和影响因素。近岸海域颗粒氮(Particulate Nitrogen,PN)呈现出含量较高、氮同位素值(δ15NPN)垂向差异较小、沉积物总氮(Total Nitrogen,TN)含量较低且氮同位素值(δ15NTN)偏负的分布特征;冷水团海域PN呈现出含量低、δ15NPN垂向差异显著、沉积物TN含量高且δ15NTN偏正的分布特征。通过海底边界剪切应力模拟、环境因子分析并结合颗粒物与沉积物δ15N示踪分析,发现南黄海海域颗粒态氮及同位素分布主要受到水体/底边界动力过程影响,陆源输入和矿化过程亦共同参与调控。Abstract: Yellow Sea is a semi-enclosed marginal sea that is significantly impacted by human activities. One of the major characteristics of Yellow Sea is the long-term existence of intensive cold water mass in summer. In order to study the cycling of particulate nitrogen in summer Yellow Sea, we analyzed the organic carbon and nitrogen content and isotope of the suspended particulate matter and of the surface sediments in South Yellow Sea in summer, 2016. We focus on the spatial variances in particulate nitrogen content, isotope character and the controlling factors respectively in coastal waters and cold water masse realm. In the coastal waters, the particulate nitrogen (PN) are comparatively higher and the vertical variances of nitrogen isotope (δ15NPN) are small, while total nitrogen content (TN) in coastal sediment are lower and the nitrogen isotope (δ15NTN) are mostly negative. In central south Yellow Sea where cold water masses exists, the PN is characterized of low content, significant vertical variances in δ15NPN, while TN in sediment are characterized of high content and positive δ15NTN. We further run bottom critical shear stress simulation and environmental factors analysis, and found out that the spatial variances of particulate nitrogen content and nitrogen isotopes in the South Yellow Sea was mainly controlled by the vertical mixing in water column, benthic boundary dynamic processes, and partially contributed by re-mineralization and terrestrial PN input.
-
Key words:
- southern Yellow Sea /
- particulate nitrogen /
- marine sediment /
- nitrogen isotope
-
图 2 南黄海采样站位分布
蓝色圆点站位颗粒物、沉积物和水体样品全部采集,黑色圆点站位只采集悬浮颗粒物和水体样品;南黄海主要海流和水团(CDW:长江冲淡水,YSCC:黄海沿岸流,KCC:朝鲜沿岸流,TWC:台湾暖流,KC:黑潮,YSCWM:黄海冷水团)[39]由蓝色箭头标识;A、B为2个断面标识,色棒标识水深
Fig. 2 Sampling stations in the southern Yellow Sea
Blue points stand for stations of water, particle matter and sediment sampling; black points stand for stations of water and particle matter sampling; main water masses include Changjiang Diluted Water (CDW) ,Yellow Sea Coastal Current (YSCC), Korean Coastal Current (KCC), Taiwan Warm Current (TWC), Kuroshio Current (KC) and Yellow Sea Cold Water Mass (YSCDM); A and B stand for two sections at 36°N and 35.5°N; color bar stands for the bottom depth
图 6 南黄海底层环境参数主成分分析
(a)及划分水团(b)绿色三角代表冷水团特征站位,黑色矩形和蓝色圆形代表近岸站位
Fig. 6 Results of principal component analysis of environment parameters at bottom layer (a) and stations categorized based on principal component analysis in the southern Yellow Sea
Cold water masses stations are marked with green triangles, inshore stations are marked with blues circle and black squares
图 7 调查站位水体SPM质量浓度(a)、POC(b)、δ13CPOC(c)、PN%(d)、PN(e)和δ15NPN(f)随底深变化
绿色三角代表冷水团特征站位,黑色矩形和蓝色圆形代表近岸站位
Fig. 7 Variation of SPM concentration(a), POC(b), δ13CPOC(c)、PN%(d)、PN(e) and δ15NPN(f)with bottom depth
Cold water masses stations are marked with green triangles, inshore stations are marked with blue circles and black squares
图 9 南黄海沉积物TNsed与底临界应力关系(a);南黄海沉积物δ15NTN与底临界应力关系(b)
绿色三角代表冷水团站位,蓝色圆点和黑色矩形代表近岸站位
Fig. 9 Relationship between bottom critical shear stress (τ) and sedimentary TN % (a) and δ15NTN (b) in sediments of the southern Yellow Sea
Cold watermasses stations are marked with green triangles, inshore stations are marked with black square and blue circles
图 10 沉积物与表层颗粒物δ15N偏差值(a)及随底边界应力变化关系(b)
绿色三角代表冷水团站位,黑色矩形代表近岸站位
Fig. 10 Spatial distribution of δ15N deviation between sediments and surface particulate nitrogen (a) and relationship of δ15N deviation versus τ (b)
Cold watermasses stations are marked with green triangles, inshore stations are marked with black square and blue circles
-
[1] Gruber N. The Marine Nitrogen Cycle: Overview and Challenges[M]//Capone D G, Bronk D A, Mulholland M R, et al. Nitrogen in the Marine Environment. 2nd ed. Amsterdam: Elsevier, 2008: 1−50. [2] Montoya J P. Nitrogen isotope fractionation in the modern ocean: implications for the sedimentary record[M]//Zahn R, Pedersen T F, Kaminski M A, et al. Carbon Cycling in the Glacial Ocean: Constraints on the Ocean’s Role in Global Change. Berlin, Heidelberg: Springer, 1994: 259−279. [3] Montoya J P, Carpenter E J, Capone D G. Nitrogen fixation and nitrogen isotope abundances in zooplankton of the oligotrophic North Atlantic[J]. Limnology and Oceanography, 2002, 47(6): 1617−1628. doi: 10.4319/lo.2002.47.6.1617 [4] Wu Ying, Dittmar T, Ludwichowski K U, et al. Tracing suspended organic nitrogen from the Yangtze River catchment into the East China Sea[J]. Marine Chemistry, 2007, 107(3): 367−377. doi: 10.1016/j.marchem.2007.01.022 [5] Waser N A D, Harrison P J, Nielsen B, et al. Nitrogen isotope fractionation during the uptake and assimilation of nitrate, nitrite, ammonium, and urea by a marine diatom[J]. Limnology and Oceanography, 1998, 43(2): 215−224. doi: 10.4319/lo.1998.43.2.0215 [6] Lourey M J, Trull T W, Sigman D M. Sensitivity of δ15N of nitrate, surface suspended and deep sinking particulate nitrogen to seasonal nitrate depletion in the Southern Ocean[J]. Global Biogeochemical Cycles, 2003, 17(3): 1081. [7] Sigman D M, Karsh K L, Casciotti K L. Nitrogen isotopes in the ocean[M]//Steele J H. Encyclopedia of Ocean Sciences. 2nd ed. Oxford, UK: Academic Press, 2009: 40−54. [8] Altabet M A, Deuser W G, Honjo S, et al. Seasonal and depth-related changes in the source of sinking particles in the North Atlantic[J]. Nature, 1991, 354(6349): 136−139. doi: 10.1038/354136a0 [9] Altabet M A, Francois R. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization[J]. Global Biogeochemical Cycles, 1994, 8(1): 103−116. doi: 10.1029/93GB03396 [10] Saino T, Hattori A. 15N natural abundance in oceanic suspended particulate matter[J]. Nature, 1980, 283(5749): 752−754. doi: 10.1038/283752a0 [11] Altabet M A. Variations in nitrogen isotopic composition between sinking and suspended particles: implications for nitrogen cycling and particle transformation in the open ocean[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1988, 35(4): 535−554. doi: 10.1016/0198-0149(88)90130-6 [12] Holmes M E, Eichner C, Struck U, et al. Reconstruction of surface ocean nitrate utilization using stable nitrogen isotopes in sinking particles and sediments[M]//Fischer G, Wefer G. Use of Proxies in Paleoceanography. Berlin, Heidelberg: Springer, 1999: 447−468. [13] Robinson R S, Kienast M, Luiza Albuquerque A, et al. A review of nitrogen isotopic alteration in marine sediments[J]. Paleoceanography, 2012, 27(4): PA4203. [14] 韦钦胜, 于志刚, 夏长水, 等. 夏季长江口外低氧区的动态特征分析[J]. 海洋学报, 2011, 33(6): 100−109.Wei Qinsheng, Yu Zhigang, Xia Changshui, et al. A preliminary analysis on the dynamic characteristics of the hypoxic zone adjacent to the Changjiang Estuary in summer[J]. Haiyang Xuebao, 2011, 33(6): 100−109. [15] Blackburn T H. Release of nitrogen compounds following resuspension of sediment: model predictions[J]. Journal of Marine Systems, 1997, 11(3/4): 343−352. [16] Middelburg J J, Nieuwenhuize J. Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde Estuary[J]. Marine Chemistry, 1998, 60(3/4): 217−225. [17] Lehmann M F, Bernasconi S M, Barbieri A, et al. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis[J]. Geochimica et Cosmochimica Acta, 2002, 66(20): 3573−3584. doi: 10.1016/S0016-7037(02)00968-7 [18] Mariotti A, Lancelot C, Billen G. Natural isotopic composition of nitrogen as a tracer of origin for suspended organic matter in the Scheldt estuary[J]. Geochimica et Cosmochimica Acta, 1984, 48(3): 549−555. doi: 10.1016/0016-7037(84)90283-7 [19] 刘秀娟, 俞志明, 宋秀贤, 等. 长江口海域悬浮颗粒有机物的稳定氮同位素分布及其生物地球化学意义[J]. 海洋科学, 2010, 34(1): 11−17.Liu Xiujuan, Yu Zhiming, Song Xiuxian, et al. Distribution in the stable nitrogen isotope of the suspended particulate organic matter in the Yangtze River (Changjiang) estuary, China and its biogeochemistry implications[J]. Marine Sciences, 2010, 34(1): 11−17. [20] Liu Qianqian, Kandasamy S, Lin Baozhi, et al. Biogeochemical characteristics of suspended particulates at deep chlorophyll maximum layers in the East China Sea[J]. Biogeosciences, 2018, 15(7): 2091−2109. [21] 苏纪兰. 中国近海水文[M]. 北京: 海洋出版社, 2005.Su Jilan. Hydrology in China Coastal Sea[M]. Beijing: China Ocean Press, 2005. [22] Naimie C E, Blain C A, Lynch D R. Seasonal mean circulation in the Yellow Sea — a model-generated climatology[J]. Continental Shelf Research, 2001, 21(6/7): 667−695. [23] Xu Lingling, Wu Dexing, Lin Xiaopei, et al. The study of the Yellow Sea warm current and its seasonal variability[J]. Journal of Hydrodynamics, 2009, 21(2): 159−165. doi: 10.1016/S1001-6058(08)60133-X [24] Yang Z S, Liu J P. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea[J]. Marine Geology, 2007, 240(1/4): 169−176. [25] Alexander C R, Demaster D J, Nittrouer C A. Sediment accumulation in a modern epicontinental-shelf setting: the Yellow Sea[J]. Marine Geology, 1991, 98(1): 51−72. doi: 10.1016/0025-3227(91)90035-3 [26] Shi Xuefa, Chen Chunfeng, Liu Yanguang, et al. Trend analysis of sediment grain size and sedimentary process in the central South Yellow Sea[J]. Chinese Science Bulletin, 2002, 47(14): 1202−1207. [27] Cheng Peng, Gao Shu, Bokuniewicz H. Net sediment transport patterns over the Bohai Strait based on grain size trend analysis[J]. Estuarine, Coastal and Shelf Science, 2004, 60(2): 203−212. doi: 10.1016/j.ecss.2003.12.009 [28] Pei Yuhua, Liu Xiaohui, He Hailun. Interpreting the sea surface temperature warming trend in the Yellow Sea and East China Sea[J]. Science China Earth Sciences, 2017, 60(8): 1558−1568. doi: 10.1007/s11430-017-9054-5 [29] Wei Qinsheng, Yao Qingzhen, Wang Baodong, et al. Long-term variation of nutrients in the southern Yellow Sea[J]. Continental Shelf Research, 2015, 111: 184−196. doi: 10.1016/j.csr.2015.08.003 [30] Li Hongmei, Zhang Yongyu, Tang Hongjie, et al. Spatiotemporal variations of inorganic nutrients along the Jiangsu coast, China, and the occurrence of macroalgal blooms (green tides) in the southern Yellow Sea[J]. Harmful Algae, 2017, 63: 164−172. doi: 10.1016/j.hal.2017.02.006 [31] Shi Wei, Wang Menghua. Green macroalgae blooms in the Yellow Sea during the spring and summer of 2008[J]. Journal of Geophysical Research, 2009, 114(C12): C12010. doi: 10.1029/2009JC005513 [32] Niu Lixia, Van Gelder P H A J M, Zhang Changkuan, et al. Physical control of phytoplankton bloom development in the coastal waters of Jiangsu (China)[J]. Ecological Modelling, 2016, 321: 75−83. doi: 10.1016/j.ecolmodel.2015.10.008 [33] 王保栋, 战闰, 臧家业. 长江口及其邻近海域营养盐的分布特征和输送途径[J]. 海洋学报, 2002, 24(1): 53−58.Wang Baodong, Zhan Run, Zang Jiaye. Distributions and transportation of nutrients in Changjiang River Estuary and its adjacent sea areas[J]. Haiyang Xuebao, 2002, 24(1): 53−58. [34] Jin Jie, Liu Sumei, Ren Jingling, et al. Nutrient dynamics and coupling with phytoplankton species composition during the spring blooms in the Yellow Sea[J]. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 2013, 97: 16−32. doi: 10.1016/j.dsr2.2013.05.002 [35] Park Y, Choi J, Gao S. Spatial variation of suspended particulate matter in the Yellow Sea[J]. Geo-Marine Letters, 2001, 20(4): 196−200. doi: 10.1007/s003670000055 [36] 杨作升, 郭志刚, 王兆祥, 等. 黄东海陆架悬浮体向其东部深海区输送的宏观格局[J]. 海洋学报, 1992, 14(2): 81−90.Yang Zuosheng, Guo Zhigang, Wang Zhaoxiang, et al. Macroscopic pattern of the transport of suspension from the shelf of Yellow Sea and East Chia Sea to their eastern deep sea area[J]. Haiyang Xuebao, 1992, 14(2): 81−90. [37] Hu Limin, Shi Xuefa, Guo Zhigang, et al. Sources, dispersal and preservation of sedimentary organic matter in the Yellow Sea: the importance of depositional hydrodynamic forcing[J]. Marine Geology, 2013, 335: 52−63. doi: 10.1016/j.margeo.2012.10.008 [38] 刁明亚. 夏季南黄海海域颗粒有机物和浮游生物的碳、氮稳定同位素分析[D]. 青岛: 中国海洋大学, 2015.Diao Mingya. Analysis of carbon and nitrogen stable isotope of particulate organic matters and plankton in South Yellow Sea in summer[D]. Qingdao: Ocean University of China, 2015. [39] Chen C T A. Chemical and physical fronts in the Bohai, Yellow and East China seas[J]. Journal of Marine Systems, 2009, 78(3): 394−410. doi: 10.1016/j.jmarsys.2008.11.016 [40] Holmes R M, Aminot A, Kérouel R, et al. A simple and precise method for measuring ammonium in marine and freshwater ecosystems[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1999, 56(10): 1801−1808. doi: 10.1139/f99-128 [41] Liu Sumei, Li Lingwei, Zhang Zhinan. Inventory of nutrients in the Bohai[J]. Continental Shelf Research, 2011, 31(16): 1790−1797. doi: 10.1016/j.csr.2011.08.004 [42] Harris D, Horwáth W R, Van Kessel C. Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis[J]. Soil Science Society of America Journal, 2001, 65(6): 1853−1856. doi: 10.2136/sssaj2001.1853 [43] Guo Xinyu, Hukuda H, Miyazawa Y, et al. A triply nested ocean model for simulating the Kuroshio—Roles of horizontal resolution on JEBAR[J]. Journal of Physical Oceanography, 2003, 33(1): 146−169. doi: 10.1175/1520-0485(2003)033<0146:ATNOMF>2.0.CO;2 [44] Zhao L, Guo X. Influence of cross-shelf water transport on nutrients and phytoplankton in the East China Sea: a model study[J]. Ocean Science, 2011, 7(1): 27−43. doi: 10.5194/os-7-27-2011 [45] 张海波, 杨鲁宁, 王丽莎, 等. 2013年夏季黄、渤海颗粒有机碳分布及来源分析[J]. 海洋学报, 2016, 38(8): 24−35.Zhang Haibo, Yang Luning, Wang Lisha, et al. Distribution and source analyses of particulate organic carbon in the Yellow Sea and Bohai Sea during summer, 2013[J]. Haiyang Xuebao, 2016, 38(8): 24−35. [46] 李昂, 于非, 刁新源, 等. 北黄海冷水团温度年际变化研究[J]. 海洋学报, 2015, 37(1): 30−42.Li Ang, Yu Fei, Diao Xinyuan, et al. Interannual variability of temperature of the northern Yellow Sea Cold Water Mass[J]. Haiyang Xuebao, 2015, 37(1): 30−42. [47] 李昂. 黄海冷水团年际变化研究[D]. 青岛: 中国科学院海洋研究所, 2016.Li Ang. The study on interannual variability of yellow sea cold water mass[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2016. [48] Wu Y, Zhang J, Li D J, et al. Isotope variability of particulate organic matter at the PN section in the East China Sea[J]. Biogeochemistry, 2003, 65(1): 31−49. doi: 10.1023/A:1026044324643 [49] Wang Houjie, Wang Aimei, Bi Naishuang, et al. Seasonal distribution of suspended sediment in the Bohai Sea, China[J]. Continental Shelf Research, 2014, 90: 17−32. doi: 10.1016/j.csr.2014.03.006 [50] Qiao Lulu, Huang Lingling, Wang Zhen, et al. Flux and its seasonal variation of suspended particulate matter in the Bohai Sea, Yellow Sea and East China Sea[J]. Geological Journal, 2016, 51(S1): 22−34. [51] Gawade L, Krishna M S, Sarma V V S S, et al. Spatio-temporal variability in the sources of particulate organic carbon and nitrogen in a tropical Godavari estuary[J]. Estuarine, Coastal and Shelf Science, 2018, 215: 20−29. doi: 10.1016/j.ecss.2018.10.004 [52] 韦钦胜, 王辉武, 葛人峰, 等. 南黄海悬浮体的垂直分布特性及其指示意义[J]. 地球科学进展, 2013, 28(3): 374−390. doi: 10.11867/j.issn.1001-8166.2013.03.0374Wei Qinsheng, Wang Huiwu, Ge Renfeng, et al. Vertical distribution of suspended matter and implications in the Southern Yellow Sea[J]. Advances in Earth Science, 2013, 28(3): 374−390. doi: 10.11867/j.issn.1001-8166.2013.03.0374 [53] 蔡德陵, 石学法, 周卫健, 等. 南黄海悬浮体和沉积物的物质来源和运移: 来自碳稳定同位素组成的证据[J]. 科学通报, 2003, 48(S1): 21−29.Cai Deling, Shi Xuefa, Zhou Weijian, et al. Sources and transportation of suspended matter and sediment in the southern Yellow Sea: evidence from stable carbon isotopes[J]. Chinese Science Bulletin, 2003, 48(S1): 21−29. [54] 刘兴健. 黄海和东海陆架西部表层沉积物中碳氮元素的分布特征与环境意义[D]. 南京: 南京大学, 2012.Liu Xinjian. Distribution and environmental significance of carbon and nitrogen of surface sediments in the western Yellow Sea and East China Sea shelf[D]. Nanjing: Nanjing University, 2012. [55] Lamb A L, Wilson G P, Leng M J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material[J]. Earth-Science Reviews, 2006, 75(1/4): 29−57. [56] Xing Lei, Zhao Meixun, Gao Wenxian, et al. Multiple proxy estimates of source and spatial variation in organic matter in surface sediments from the southern Yellow Sea[J]. Organic Geochemistry, 2014, 76: 72−81. doi: 10.1016/j.orggeochem.2014.07.005 [57] 董爱国. 黄、东海海域沉积物的源汇效应及其环境意义[D]. 青岛: 中国海洋大学, 2011.Dong Aiguo. Source, sink and its environmental record of sediments in Yellow Sea and East China Sea[D]. Qingdao: Ocean University of China, 2011. [58] 韩天伟, 吕晓霞, 宋金明, 等. 南黄海表层沉积物中生源要素的分布规律及其环境意义[J]. 广西科学院学报, 2017, 33(2): 87−92, 101.Han Tianwei, Lv Xiaoxia, Song Jinming, et al. Distribution of biogenic elements and their environmental implications in the surface sediments of the South Yellow Sea[J]. Journal of Guangxi Academy of Sciences, 2017, 33(2): 87−92, 101. [59] Zeng Xiangming, He Ruoying, Xue Zuo, et al. River-derived sediment suspension and transport in the Bohai, Yellow, and East China Seas: a preliminary modeling study[J]. Continental Shelf Research, 2015, 111: 112−125. doi: 10.1016/j.csr.2015.08.015 [60] Yoon S H, Kim J H, Yi H I, et al. Source, composition and reactivity of sedimentary organic carbon in the river-dominated marginal seas: a study of the eastern Yellow Sea (the northwestern Pacific)[J]. Continental Shelf Research, 2016, 125: 114−126. doi: 10.1016/j.csr.2016.07.010 -