留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于地面3D激光扫描技术的海南岛南部海岸巨砾沉积研究

刘桢峤 周亮 高抒

刘桢峤,周亮,高抒. 基于地面3D激光扫描技术的海南岛南部海岸巨砾沉积研究[J]. 海洋学报,2019,41(11):127–141,doi:10.3969/j.issn.0253−4193.2019.11.012
引用本文: 刘桢峤,周亮,高抒. 基于地面3D激光扫描技术的海南岛南部海岸巨砾沉积研究[J]. 海洋学报,2019,41(11):127–141,doi:10.3969/j.issn. 0253−4193.2019.11.012
Liu Zhenqiao,Zhou Liang,Gao Shu. Application of the terrestrial laser scanner to the coastal boulders on the southern coast of Hainan Island[J]. Haiyang Xuebao,2019, 41(11):127–141,doi:10.3969/j.issn.0253−4193.2019.11.012
Citation: Liu Zhenqiao,Zhou Liang,Gao Shu. Application of the terrestrial laser scanner to the coastal boulders on the southern coast of Hainan Island[J]. Haiyang Xuebao,2019, 41(11):127–141,doi:10.3969/j.issn.0253−4193.2019.11.012

基于地面3D激光扫描技术的海南岛南部海岸巨砾沉积研究

doi: 10.3969/j.issn.0253-4193.2019.11.012
基金项目: 国家自然科学基金项目(41706096,41530962);河口海岸学国家重点实验室科研业务费(SKLEC-2017RCDW03)。
详细信息
    作者简介:

    刘桢峤(1995—),男,江苏省江阴市人,主要从事海岸沉积动力学研究。E-mail:51173904036@stu.ecnu.edu.cn

    通讯作者:

    高抒,男,博士,教授,主要从事海洋沉积动力学研究。E-mail:sgao@sklec.ecnu.edu.cn

  • 中图分类号: P736.21

Application of the terrestrial laser scanner to the coastal boulders on the southern coast of Hainan Island

  • 摘要: 海岸巨砾沉积是反映海岸极端波浪事件活动历史的重要载体,对于预测未来海洋极端水文灾害发生趋势具有重要意义。本文基于地面3D激光扫描技术,以海南岛南部海岸大东海和小东海的海岸珊瑚巨砾沉积为研究对象,使用了Riegl VZ4000地面3D激光扫描仪精确测量了这些珊瑚巨砾的体积参数,结合水文模型计算出搬运这些巨砾所需的临界起动波高和流速,重构了极端波浪事件强度,并根据沉积学和动力学对海岸珊瑚巨砾的沉积成因进行了分析。结果表明,地面3D激光扫描技术与传统测量方式相比,具有方便、快速、高精度的优势。海南岛大、小东海堆积的珊瑚巨砾沉积是由台风波浪破碎珊瑚礁平台前缘并将碎块输运到礁平台而成的,且台风的最大强度可能接近超强台风“宝霞”。本研究可为重建南海地区古风暴活动历史,揭示该地台风活动规律以及海岸极端波浪灾害的防风减灾工作提供重要科学参考信息。
  • 图  1  海南岛南部大、小东海研究地点(a)和大、小东海采样位置(b)

    底图来自Google Earth

    Fig.  1  Study area (a) and research locations (b) of Dadonghai and Xiadonghai in southern coast of Hainan Island

    The base map is from Google Earth

    图  2  扫描仪工作(a);GPS-RTK工作情形(b);3D“点云”模型(c);基于SD点云数据进行巨砾体积参数计算(d)

    Fig.  2  The terrestrial laser scan (a) and GPS-RTK (b); 3D point cloud model (c); calculation of volume parameters of boulders with 3D view of a cloud of points (d)

    图  3  小东海巨砾分布(a);大东海西侧巨砾分布(b);大东海东侧巨砾分布(c)

    底图来自Google Earth

    Fig.  3  Distribution of boulders in Xiaodonghai (a), distribution of boulders on the west side of Dadonghai (b), distribution of boulders on the east side of Dadonghai (c)

    The base map is from Google Earth

    图  4  不同输运模式巨砾起动所需流速对比

    Fig.  4  Comparison of velocity required for boulder transportation in different transport modes

    图  5  传统方法和TLS技术计算体积对比

    Fig.  5  Volume comparison between traditional methods and TLS techniques

    图  6  海岸巨砾质量与搬运距离关系[10, 14, 44-45]

    Fig.  6  Transport distance vs mass of coastal boulders[10, 14, 44-45]

    图  7  三亚湾累年各向最大波高分布(莺歌海海洋站)

    Fig.  7  Annual maximum wave height distribution in Sanya Bay (data from Yinggehai Marine Station)

    表  1  巨砾起动的波高

    Tab.  1  Wave height required for boulders transportation

    初始位置水动力环境
    海啸台风
    浸没$H \geqslant \dfrac{{a\left( {{\rho _s} - {\rho _w}} \right) / {\rho _w}}}{{{C_d}\left( {ac / {b^2}} \right) + {C_l}}}$$H \geqslant \dfrac{{2a\left( {{\rho _s} - {\rho _w}} \right) / {\rho _w}}}{{{C_d}\left( {ac / {b^2}} \right) + {C_l}}}$
    暴露$H \geqslant \dfrac{{0.5a\left( {{\rho _s} - {\rho _w}} \right)/{\rho _{{w}}} - {C_m}\left( {a/b} \right)\left( {{\ddot{u}} /g} \right)}}{{{C_d}\left( {ac/{b^2}} \right) + {C_l}}}$$H \geqslant \dfrac{{2a\left( {{\rho _s} - {\rho _w}} \right)/{\rho _{{w}}} - 4{C_m}\left( {a/b} \right)\left( {{\ddot{u}} /g} \right)}}{{{C_d}\left( {ac/{b^2}} \right) + {C_l}}}$
    交错镶嵌$H \geqslant \dfrac{{0.25a\left( {{\rho _s} - {\rho _w}} \right)/{\rho _w}}}{{{C_l}}}$$H \geqslant \dfrac{{a\left( {{\rho _s} - {\rho _w}} \right)/{\rho _w}}}{{{C_l}}}$
    下载: 导出CSV

    表  2  巨砾起动的流速

    Tab.  2  Flow velocity required for coral boulders transportation

    搬运方式初始位置
    地表交错镶嵌
    滑动${u^2} \geqslant \dfrac{{2({\rho _s}/{\rho _w} - 1)gc({\mu _s}\cos\theta + \sin\theta )}}{{{C_d}(c/b) + {\mu _s}{C_l}}}$
    滚动${u^2} \geqslant \dfrac{{2({\rho _s}/{\rho _w} - 1)gc[\cos\theta + (c/b)\sin\theta ]}}{{{C_d}({c^2}/{b^2}) + {C_l}}}$
    跃移${u^2} \geqslant \dfrac{{2({\rho _s}/{\rho _w} - 1)gc\cos\theta }}{{{C_l}}}$${u^2} \geqslant \dfrac{{2({\rho _s}/{\rho _w} - 1)gc(\cos\theta + {\mu _s}\sin \theta )}}{{{C_l}}}$
    下载: 导出CSV

    表  3  TLS技术与传统方法测量海岸珊瑚巨砾参数结果对比

    Tab.  3  Comparison of parameters, weight estimation and calculation of boulders taking traditional axes and TLS measurements

    巨砾编号a轴长度/mb轴长度/mc轴长度/mV1/m3V2/m3Dr/mM/kg
    TLS传统方法TLS传统方法TLS传统方法
    DDHE_012.322.561.761.721.170.813.801.8737.396 916
    DDHW_013.593.372.612.241.721.677.526.6046.6813 686
    DDHW_022.642.922.182.091.451.215.703.8747.7910 374
    DDHW_031.951.951.921.921.120.723.441.4144.676 261
    DDHW_042.802.562.531.921.581.535.793.9463.1810 538
    XDH_012.943.152.582.862.112.5110.8911.8464.5819 820
    XDH_021.831.751.821.571.181.182.701.7053.784 914
    XDH_032.151.651.721.491.191.233.501.5846.536 370
    XDH_041.631.561.341.411.211.032.191.1947.593 986
    XDH_051.882.881.671.671.221.273.073.2040.235 587
    XDH_062.532.642.442.331.671.524.744.9031.808 627
    XDH_072.291.971.851.771.191.363.642.4849.246 625
    XDH_082.482.542.301.911.511.823.484.6243.086 334
    XDH_093.473.361.931.801.391.513.564.7857.106 479
    XDH_102.152.511.912.061.271.422.393.8470.634 350
    XDH_112.832.772.462.181.641.745.145.5032.589 355
    XDH_122.482.592.462.141.611.434.634.1537.158 427
    XDH_13143.123.662.472.221.171.375.325.8339.429 682
    XDH_152.612.582.252.141.541.533.974.4257.157 225
    XDH_163.343.312.232.191.481.474.975.5871.949 045
    XDH_172.722.622.611.621.611.745.873.87116.0310 683
    XDH_183.103.152.222.311.311.414.225.3784.247 680
    XDH_193.163.043.022.411.621.337.575.1071.9713 777
      注:XDH表示采样于小东海;DDH表示采样于大东海;V1为TLS技术计算的体积;V2为传统方法测量计算的体积;Dr为巨砾到珊瑚礁平台前缘的距离;M为质量;其中编号为XDH_13,XDH_14的海岸珊瑚巨砾由于层叠堆积在一起无法分离测量,将其按一块计算。
    下载: 导出CSV

    表  4  海岸珊瑚巨砾起动波高

    Tab.  4  Wave height required to coastal coral boulders transportation

    巨砾编号水动力环境起动波高/m
    初始状态(浸没)初始状态(暴露)初始状态(镶嵌)
    TLS技术传统方法TLS技术传统方法TLS技术传统方法
    DDHE_01海啸0.941.270.340.452.562.82
    台风1.892.541.361.7810.2211.28
    DDHW_01海啸1.411.090.640.463.953.71
    台风2.832.182.571.8515.8214.85
    DDHW_02海啸1.161.280.480.522.913.22
    台风2.312.551.922.0611.6312.87
    DDHW_03海啸1.121.630.430.612.152.15
    台风2.243.261.702.428.598.59
    DDHW_04海啸1.410.870.630.343.082.82
    台风2.811.742.501.3512.3411.28
    XDH_01海啸1.131.170.510.553.243.47
    台风2.262.342.042.2112.9513.88
    XDH_02海啸0.970.740.350.242.021.93
    台风1.941.481.420.968.067.71
    XDH_03海啸0.880.650.570.202.371.82
    台风1.771.292.290.809.477.27
    XDH_04海啸0.540.680.350.201.801.72
    台风1.081.361.400.797.186.87
    下载: 导出CSV
  • [1] 李佳英, 薛建军, 王维国, 等. 2013年国外重大台风灾害分析与启示[J]. 气象与减灾研究, 2014, 37(2): 50−54.

    Li Jiaying, Xue Jianjun, Wang Weiguo, et al. Analysis and enlightenment of the overseas important typhoon disaster in 2013[J]. Meteorology and Disaster Reduction Research, 2014, 37(2): 50−54.
    [2] Serreze M C, Walsh J E, Chapin III F S, et al. Observational evidence of recent change in the northern high-latitude environment[J]. Climatic Change, 2000, 46(1/2): 159−207. doi: 10.1023/A:1005504031923
    [3] McGranahan G, Balk D, Anderson B. The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones[J]. Environment and Urbanization, 2007, 19(1): 17−37. doi: 10.1177/0956247807076960
    [4] 廖淦标, 范代读. 全球变暖是否导致台风增强: 古风暴学研究进展与启示[J]. 科学通报, 2008, 53(19): 2907−2922.

    Liu K B, Fan Daidu. Perspectives on the linkage between typhoon activity and global warming from recent research advances in paleotempestology[J]. Chinese Science Bulletin, 2008, 53(19): 2907−2922.
    [5] Frohlich C, Hornbach M J, Taylor F W, et al. Huge erratic boulders in Tonga deposited by a prehistoric tsunami[J]. Geology, 2009, 37(2): 131−134. doi: 10.1130/G25277A.1
    [6] Terry J P, Lau A Y A, Etienne S. Outlook for boulder studies within tropical geomorphology and coastal hazard research[M]//Terry J P, Lau A Y A, Etienne S. Reef-Platform Coral Boulders. Singapore: Springer, 2013: 97–102.
    [7] Morton R A, Gelfenbaum G, Jaffe B E. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples[J]. Sedimentary Geology, 2007, 200(3/4): 184−207.
    [8] Hall A M, Hansom J D, Williams D M, et al. Distribution, geomorphology and lithofacies of cliff-top storm deposits: examples from the high-energy coasts of Scotland and Ireland[J]. Marine Geology, 2006, 232(3/4): 131−155.
    [9] Spiske M, Böröcz Z, Bahlburg H. The role of porosity in discriminating between tsunami and hurricane emplacement of boulders--a case study from the Lesser Antilles, southern Caribbean[J]. Earth and Planetary Science Letters, 2008, 268(3/4): 384−396.
    [10] Goto K, Okada K, Imamura F. Characteristics and hydrodynamics of boulders transported by storm waves at Kudaka Island, Japan[J]. Marine Geology, 2009, 262(1/4): 14−24.
    [11] Etienne S, Paris R. Boulder accumulations related to storms on the south coast of the Reykjanes Peninsula (Iceland)[J]. Geomorphology, 2010, 114(1/2): 55−70.
    [12] Terry J P, Dunne K, Jankaew K. Prehistorical frequency of high-energy marine inundation events driven by typhoons in the Bay of Bangkok (Thailand), interpreted from coastal carbonate boulders[J]. Earth Surface Processes and Landforms, 2016, 41(4): 553−562. doi: 10.1002/esp.3873
    [13] Nandasena N A K, Paris R, Tanaka N. Reassessment of hydrodynamic equations: minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis)[J]. Marine Geology, 2011, 281(1/4): 70−84.
    [14] Kennedy A B, Mori N, Yasuda T, et al. Extreme block and boulder transport along a cliffed coastline (Calicoan Island, Philippines) during Super Typhoon Haiyan[J]. Marine Geology, 2017, 383: 65−77. doi: 10.1016/j.margeo.2016.11.004
    [15] Bryant E A, Young R W, Price D M. Evidence of tsunami sedimentation on the southeastern coast of Australia[J]. The Journal of Geology, 1992, 100(6): 753−765. doi: 10.1086/629626
    [16] Bryant E A, Young R W, Price D M, et al. The impact of tsunami on the coastline of Jervis Bay, southeastern Australia[J]. Physical Geography, 1997, 18(5): 440−459. doi: 10.1080/02723646.1997.10642629
    [17] Nott J. Extremely high-energy wave deposits inside the Great Barrier Reef, Australia: determining the cause-tsunami or tropical cyclone[J]. Marine Geology, 1997, 141(1/4): 193−207.
    [18] May S M, Engel M, Brill D, et al. Block and boulder transport in eastern Samar (Philippines) during Supertyphoon Haiyan[J]. Earth Surface Dynamics, 2015, 3(4): 543−558. doi: 10.5194/esurf-3-543-2015
    [19] Erdmann W, Kelletat D, Scheffers A. Boulder transport by storms-extreme-waves in the coastal zone of the Irish west coast[J]. Marine Geology, 2018, 399: 1−13. doi: 10.1016/j.margeo.2018.02.003
    [20] Terry J P, Jankaew K, Dunne K. Coastal vulnerability to typhoon inundation in the Bay of Bangkok, Thailand? Evidence from carbonate boulder deposits on Ko Larn Island[J]. Estuarine, Coastal and Shelf Science, 2015, 165: 261−269. doi: 10.1016/j.ecss.2015.05.028
    [21] Maouche S, Morhange C, Meghraoui M. Large boulder accumulation on the Algerian coast evidence tsunami events in the western Mediterranean[J]. Marine Geology, 2009, 262(1/4): 96−104.
    [22] Switzer A D, Burston J M. Competing mechanisms for boulder deposition on the southeast Australian coast[J]. Geomorphology, 2010, 114(1/2): 42−54.
    [23] 马立广. 地面三维激光扫描测量技术研究[D]. 武汉: 武汉大学, 2005.

    Ma Liguang. The research of terrestrial laser scanning technology[D]. Wuhan: Wuhan University, 2005.
    [24] Rosser N J, Petley D N, Lim M, et al. Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2005, 38(4): 363−375. doi: 10.1144/1470-9236/05-008
    [25] 谢卫明, 何青, 章可奇, 等. 三维激光扫描系统在潮滩地貌研究中的应用[J]. 泥沙研究, 2015(1): 1−6.

    Xie Weiming, He Qing, Zhang Keqi, et al. Application of the terrestrial laser scanner to measuring geomorphology in tidal flats and salt marshes[J]. Journal of Sediment Research, 2015(1): 1−6.
    [26] 王春晓, 纪育强, 孙强, 等. 三维激光扫描技术在海洋模型试验中的应用[J]. 海岸工程, 2013, 32(2): 55−62. doi: 10.3969/j.issn.1002-3682.2013.02.007

    Wang Chunxiao, Ji Yuqiang, Sun Qiang, et al. Application of 3D laser scanning technology to the marine model test[J]. Coastal Engineering, 2013, 32(2): 55−62. doi: 10.3969/j.issn.1002-3682.2013.02.007
    [27] Olsen M J, Cheung K F, Yamazaki Y, et al. Damage assessment of the 2010 Chile earthquake and tsunami using terrestrial laser scanning[J]. Earthquake Spectra, 2012, 28(S1): S179−S197. doi: 10.1193/1.4000021
    [28] Donoghue D N M, Watt P J, Cox N J, et al. Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data[J]. Remote Sensing of Environment, 2007, 110(4): 509−522. doi: 10.1016/j.rse.2007.02.032
    [29] Calders K, Newnham G, Burt A, et al. Nondestructive estimates of above-ground biomass using terrestrial laser scanning[J]. Methods in Ecology and Evolution, 2015, 6(2): 198−208. doi: 10.1111/2041-210X.12301
    [30] 梁海萍, 梁海燕, 车志伟, 等. 近五十年登陆海南省的热带气旋统计特征分析[J]. 海洋预报, 2015, 32(4): 68−74. doi: 10.11737/j.issn.1003-0239.2015.04.008

    Liang Haiping, Liang Haiyan, Che Zhiwei, et al. A statistical analysis of landfall tropical cyclone in fifty years in Hainan Province[J]. Marine Forecasts, 2015, 32(4): 68−74. doi: 10.11737/j.issn.1003-0239.2015.04.008
    [31] 张明书, 刘键, 李浩, 等. 海南岛周缘珊瑚礁的基本特征和成礁时代[J]. 海洋地质与第四纪地质, 1990, 10(2): 25−43.

    Zhang Mingshu, Liu Jian, Li Hao, et al. Basic characteristics and formation time of peripheral coral reefs in Hainan Island[J]. Marine Geology and Quaternary Geology, 1990, 10(2): 25−43.
    [32] 吕炳全, 王国忠, 全松青. 海南岛珊瑚岸礁的特征[J]. 地理研究, 1984, 3(3): 1−16.

    Lü Bingquan, Wang Guozhong, Quan Songqing. The characteristics of fringing reefs of Hainan Island[J]. Geographical Research, 1984, 3(3): 1−16.
    [33] 王颖. 海南岛海岸环境特征[J]. 海洋地质前沿, 2002, 18(3): 1−9.

    Wang Ying. Features of Hainan Island coastal environment[J]. Marine Geology Letters, 2002, 18(3): 1−9.
    [34] 毛龙江, 张永战, 魏灵, 等. 海南岛三亚湾海滩研究[J]. 第四纪研究, 2006, 26(3): 477−484. doi: 10.3321/j.issn:1001-7410.2006.03.020

    Mao Longjiang, Zhang Yongzhan, Wei Ling, et al. Study on beach characteristics in Sanya area of Hainan Island[J]. Quaternary Sciences, 2006, 26(3): 477−484. doi: 10.3321/j.issn:1001-7410.2006.03.020
    [35] Nott J. Waves, coastal boulder deposits and the importance of the pre-transport setting[J]. Earth and Planetary Science Letters, 2003, 210(1/2): 269−276.
    [36] Lorang M S. A wave-competence approach to distinguish between boulder and megaclast deposits due to storm waves versus tsunamis[J]. Marine Geology, 2011, 283(1/4): 90−97.
    [37] Scheffers A, Kelletat D. Sedimentologic and geomorphologic tsunami imprints worldwide: a review[J]. Earth-Science Reviews, 2003, 63(1/2): 83−92.
    [38] Engel M, May S M. Bonaire's boulder fields revisited: evidence for Holocene tsunami impact on the Leeward Antilles[J]. Quaternary Science Reviews, 2012, 54: 126−141. doi: 10.1016/j.quascirev.2011.12.011
    [39] Hoffmeister D, Ntageretzis K, Aasen H, et al. 3D model-based estimations of volume and mass of high-energy dislocated boulders in coastal areas of Greece by terrestrial laser scanning[J]. Zeitschrift für Geomorphologie, 2014, 58(3): 115−135. doi: 10.1127/0372-8854/2013/S-00126
    [40] 尹洪强. 基于SWAN模式下南海台风浪的推算[D]. 大连: 大连理工大学, 2014.

    Yin Hongqiang. Typhoon wave forecast in the South Sea by SWAN model[D]. Dalian: Dalian University of Technology, 2014.
    [41] 周良明, 吴伦宇, 郭佩芳, 等. 应用WAVEWATCH-Ⅲ模式对南海的波浪场进行数值计算、统计分析和研究[J]. 热带海洋学报, 2007, 26(5): 1−8. doi: 10.3969/j.issn.1009-5470.2007.05.001

    Zhou Liangming, Wu Lunyu, Guo Peifang, et al. Simulation and study of wave in South China Sea using WAVEWATCH-Ⅲ[J]. Journal of Tropical Oceanography, 2007, 26(5): 1−8. doi: 10.3969/j.issn.1009-5470.2007.05.001
    [42] Liu Y, Santos A, Wang S M, et al. Tsunami hazards along Chinese coast from potential earthquakes in South China Sea[J]. Physics of the Earth and Planetary Interiors, 2007, 163(1/4): 233−244.
    [43] 周亮, 高抒, 杨阳, 等. 海南岛东南部海湾350年古风暴事件沉积与历史文献记录对比[J]. 海洋学报, 2015, 37(9): 84−94. doi: 10.3969/j.issn.0253-4193.2015.09.009

    Zhou Liang, Gao Shu, Yang Yang, et al. Comparison of paleostorm events between sedimentary and historical archives: a 350 year record from southeastern Hainan Island coastal embayments[J]. Haiyang Xuebao, 2015, 37(9): 84−94. doi: 10.3969/j.issn.0253-4193.2015.09.009
    [44] Goto K, Miyagi K, Kawana T, et al. Emplacement and movement of boulders by known storm waves-field evidence from the Okinawa Islands, Japan[J]. Marine Geology, 2011, 283(1/4): 66−78.
    [45] Hongo C, Kurihara H, Golbuu Y. Coral boulders on Melekeok reef in the Palau Islands: an indicator of wave activity associated with tropical cyclones[J]. Marine Geology, 2018, 399: 14−22. doi: 10.1016/j.margeo.2018.02.004
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  269
  • HTML全文浏览量:  15
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-22
  • 修回日期:  2019-01-12
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-11-25

目录

    /

    返回文章
    返回