留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于射线理论的海脊俘获波机制

万鹏 王岗 于洪荃 张尧 陶金波

万鹏,王岗,于洪荃,等. 基于射线理论的海脊俘获波机制[J]. 海洋学报,2019,41(11):35–39,doi:10.3969/j.issn.0253−4193.2019.11.004
引用本文: 万鹏,王岗,于洪荃,等. 基于射线理论的海脊俘获波机制[J]. 海洋学报,2019,41(11):35–39,doi:10.3969/j.issn.0253−4193.2019.11.004
Wan Peng,Wang Gang,Yu Hongquan, et al. Mechanism of trapped wave over an ocean ridge based on the ray theory[J]. Haiyang Xuebao,2019, 41(11):35–39,doi:10.3969/j.issn.0253−4193.2019.11.004
Citation: Wan Peng,Wang Gang,Yu Hongquan, et al. Mechanism of trapped wave over an ocean ridge based on the ray theory[J]. Haiyang Xuebao,2019, 41(11):35–39,doi:10.3969/j.issn.0253−4193.2019.11.004

基于射线理论的海脊俘获波机制

doi: 10.3969/j.issn.0253-4193.2019.11.004
基金项目: 国家重点研发计划(2017YFC1404205);国家自然科学基金面上项目(51579090);中央高校基本科研业务费专项(2019B12214)。
详细信息
    作者简介:

    万鹏(1994—),男,江西省南昌市人,主要从事水动力数值模拟方面研究。E-mail:1358471976@qq.com

    通讯作者:

    王岗(1982—),男,河北省张家口市人,副教授,博导,主要从事海洋灾害致灾机理及数值模型开发研究。E-mail:gangwang@hhu.edu.cn

  • 中图分类号: P731.25

Mechanism of trapped wave over an ocean ridge based on the ray theory

  • 摘要: 虽然众多现场实测资料和数值模拟均表明海脊可以俘获海啸波并引导其传播至远场地区,带来严重的灾害,但少有研究阐述其产生机理。本文基于射线理论,推导了指数型海脊上波浪传播轨迹的理论解,并提出了震源位于海脊顶部的海啸被海脊完全俘获的条件。基于该俘获条件进一步给出了海脊对海啸俘获效率的表达式,用以评估海啸中被海脊俘获影响至远场的能量占海啸总能量的比例。
  • 图  1  指数型海脊剖面

    Fig.  1  Exponential ridge profile

    图  2  射线轨迹示意图

    Fig.  2  Ray trajectory diagram

    图  3  俘获效率示意图

    Fig.  3  Capture efficiency diagram

    图  4  马里亚纳海岭剖面、拟合剖面及Chichijima实测的功率谱[18]

    Fig.  4  Mariana ridge profile, fitted profile and power spectrum observed at Chichijima[18]

    图  5  不同入射角的射线由原点至海脊内外的运动轨迹

    Fig.  5  The trajectories of rays with different incident angles from the origin to the ridge and beyond

  • [1] Craig W. Surface water waves and tsunamis[J]. Journal of Dynamics and Differential Equations, 2006, 18(3): 525−549. doi: 10.1007/s10884-006-9031-4
    [2] 杨马陵, 魏柏林. 南海海域地震海啸潜在危险的探析[J]. 灾害学, 2005, 20(3): 41−47. doi: 10.3969/j.issn.1000-811X.2005.03.009

    Yang Maling, Wei Bailin. The potential seismic tsunami risk in South China Sea and it’s surrounding region[J]. Journal of Catastrophology, 2005, 20(3): 41−47. doi: 10.3969/j.issn.1000-811X.2005.03.009
    [3] 陈运泰, 杨智娴, 许力生. 海啸、地震海啸与海啸地震[J]. 物理, 2005, 34(12): 864−872. doi: 10.3321/j.issn:0379-4148.2005.12.002

    Chen Yuntai, Yang Zhixian, Xu Lisheng. Tsunamis, earthquake-generated tsunamis and tsunamigenic earthquakes[J]. Physics, 2005, 34(12): 864−872. doi: 10.3321/j.issn:0379-4148.2005.12.002
    [4] 姚远, 蔡树群, 王盛安. 海啸波数值模拟的研究现状[J]. 海洋科学进展, 2007, 25(4): 487−494. doi: 10.3969/j.issn.1671-6647.2007.04.016

    Yao Yuan, Cai Shuqun, Wang Sheng’an. Present status of study on numerical simulation of tsunami wave[J]. Advances in Marine Science, 2007, 25(4): 487−494. doi: 10.3969/j.issn.1671-6647.2007.04.016
    [5] Kowalik Z, Horrillo J, Knight W, et al. Kuril Islands tsunami of November 2006: 1. Impact at Crescent City by distant scattering[J]. Journal of Geophysical Research: Oceans, 2008, 113(C1): C01020.
    [6] Rabinovich A B, Candella R N, Thomson R E. Energy decay of the 2004 Sumatra tsunami in the world ocean[J]. Pure and Applied Geophysics, 2011, 168(11): 1919−1950. doi: 10.1007/s00024-011-0279-1
    [7] Rabinovich A B, Woodworth P L, Titov V V. Deep-sea observations and modeling of the 2004 Sumatra tsunami in Drake Passage[J]. Geophysical Research Letters, 2011, 38(16): L16604.
    [8] Titov V, Rabinovich A B, Mofjeld H O, et al. The global reach of the 26 December 2004 Sumatra tsunami[J]. Science, 2005, 309(5743): 2045−2048. doi: 10.1126/science.1114576
    [9] Wilson R I, Admire A R, Borrero J C, et al. Observations and impacts from the 2010 Chilean and 2011 Japanese Tsunamis in California (USA)[J]. Pure and Applied Geophysics, 2013, 170(6/8): 1127−1147.
    [10] Rabinovich A B, Titov V V, Moore C W, et al. The 2004 Sumatra tsunami in the Southeastern Pacific Ocean: new global insight from observations and modeling[J]. Journal of Geophysical Research: Oceans, 2017, 122(10): 7992−8019. doi: 10.1002/2017JC013078
    [11] Longuet-Higgins M S. On the trapping of waves along a discontinuity of depth in a rotating ocean[J]. Journal of Fluid Mechanics, 1968, 31(3): 417−434. doi: 10.1017/S0022112068000236
    [12] Buchwald V T. Long waves on oceanic ridges[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1969, 308(1494): 343−354. doi: 10.1098/rspa.1969.0014
    [13] Shaw R P, Neu W. Long-wave trapping by oceanic ridges[J]. Journal of Physical Oceanography, 1981, 11(10): 1334−1344. doi: 10.1175/1520-0485(1981)011<1334:LWTBOR>2.0.CO;2
    [14] Xiong Mengjie, Wang Gang, Zheng Jinhai, et al. Analytic arrival-time prediction method for the largest wave of tsunami trapped by parabolic oceanic ridges[J]. Journal of Earthquake and Tsunami, 2017, 11(1): 1740004. doi: 10.1142/S1793431117400048
    [15] 王岗, 胡见, 王培涛, 等. 双曲余弦海脊上海啸俘获波的解析与数值研究[J]. 海洋学报, 2018, 40(5): 15−23. doi: 10.3969/j.issn.0253-4193.2018.05.002

    Wang Gang, Hu Jian, Wang Peitao, et al. Analytical and numerical investigation of tsunami trapped waves over a hyperbolic-cosine squared ocean ridge[J]. Haiyang Xuebao, 2018, 40(5): 15−23. doi: 10.3969/j.issn.0253-4193.2018.05.002
    [16] Mei C C, Stiassnie M, Yue D K P. Theory and Applications of Ocean Surface Waves[M]. Singapore: World Scientific, 2005.
    [17] 邹志利. 水波理论及其应用[M]. 北京: 科学出版社, 2005: 565.

    Zou Zhili. Water Wave Theories and Their Applications[M]. Beijing: Science Press, 2005: 565.
    [18] Koshimura S I, Imamura F, Shuto N. Characteristics of tsunamis propagating over oceanic ridges: numerical simulation of the 1996 Irian Jaya earthquake tsunami[J]. Natural Hazards, 2001, 24(3): 213−229. doi: 10.1023/A:1012038121972
  • 加载中
图(5)
计量
  • 文章访问数:  275
  • HTML全文浏览量:  15
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-10
  • 修回日期:  2019-05-15
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-11-25

目录

    /

    返回文章
    返回