留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非线性薛定谔方程的波浪预报方法研究

张新宇 韩佳 王骁 石爱国

张新宇,韩佳,王骁,等. 基于非线性薛定谔方程的波浪预报方法研究[J]. 海洋学报,2019,41(11):15–24,doi:10.3969/j.issn.0253−4193.2019.11.002
引用本文: 张新宇,韩佳,王骁,等. 基于非线性薛定谔方程的波浪预报方法研究[J]. 海洋学报,2019,41(11):15–24,doi:10.3969/j.issn.0253−4193.2019. 11.002
Zhang Xinyu,Han Jia,Wang Xiao, et al. Research on wave prediction method based on nonlinear Schrödinger equation[J]. Haiyang Xuebao,2019, 41(11):15–24,doi:10.3969/j.issn.0253−4193.2019.11.002
Citation: Zhang Xinyu,Han Jia,Wang Xiao, et al. Research on wave prediction method based on nonlinear Schrödinger equation[J]. Haiyang Xuebao,2019, 41(11):15–24,doi:10.3969/j.issn.0253−4193.2019.11.002

基于非线性薛定谔方程的波浪预报方法研究

doi: 10.3969/j.issn.0253-4193.2019.11.002
详细信息
    作者简介:

    张新宇(1989—),男,山东省高密市人,博士,从事海浪预报相关研究。E-mail:zhang-xy08@163.com

    通讯作者:

    王骁(1980—),男,辽宁省沈阳市人,博士,从事海浪预报及船舶摇荡预报相关研究。E-mail:1748692208@qq.com

  • 中图分类号: P733

Research on wave prediction method based on nonlinear Schrödinger equation

  • 摘要: 为探索海浪波面信息的实时预报方法,以三阶非线性薛定谔(NLS)方程的逆散射变换求解为基础,通过理论推导,给出了一种由实测波高时历数据计算其NLS方程本征值的方法,进一步实现了对波浪包络时空演变的预报。通过预报结果与实测波列的比对,验证了方法的有效性和准确性。该方法可为船舶或海上平台的大浪预警,以及为大波浪中海上作业寻找窗口期等提供一条新的技术途径。
  • 图  1  黎曼θ函数解图像

    Fig.  1  Figure of a Riemann θ function solution

    图  2  $A = 1,\;T = 6$ s时寻优效果示意图

    a. 10次迭代后优化结果;b. 最终寻优结果

    Fig.  2  Figure of optimization when $A = 1$ and $T = 6$ s

    a. Optimization result after 10 steps of iteration; b. the final optimization result

    图  3  $A = 1,\;T = 10$ s时寻优效果示意图

    a. 10次迭代后优化结果;b. 最终寻优结果

    Fig.  3  Figure of optimization when $A = 1$ and $T = 10$ s

    a. Optimization result after 10 steps of iteration; b. the final optimization result

    图  4  $x = 0$处的波包络时间序列

    Fig.  4  Wave envelope time series at the point $x = 0$

    图  5  $x = 0$处序列的优化结果

    Fig.  5  The final optimization result of the series at the point $x = 0$

    图  6  $x = 1$处的波包络时间序列

    Fig.  6  Wave envelope time series at the point $x = 1$

    图  7  $x = 1$处序列的优化结果

    Fig.  7  The final optimization result of the series at the point $x = 1$

    图  8  $x = 1.5$处的波包络时间序列

    Fig.  8  Wave envelope time series at the point $x = 1.5$

    图  9  $x = 1.5$处序列的优化结果

    Fig.  9  The final optimization result of the series at the point $x = 1.5$

    图  10  台南水力学实验室水池实验数据

    Fig.  10  Experiment data of Tainan Hydraulics Laboratory

    图  11  单周期波列数据

    Fig.  11  Wave data of single period

    图  12  初始波列及其包络

    Fig.  12  The initial wave train and its envelope

    图  13  初始波列及其包络

    Fig.  13  The initial wave train and its envelope

    图  14  黎曼θ函数解图像

    Fig.  14  Figure of a Riemann θ function solution

    图  15  第3个波高传感器(37 m)处实测波列与预报包络

    Fig.  15  The measured wave train and predicted envelope at the third probe (37 m)

    图  19  第22个波高传感器(229 m)处实测波列与预报包络

    Fig.  19  The measured wave train and predicted envelope at the twenty-second probe (229 m)

    图  16  第5个波高传感器(74 m)处实测波列与预报包络

    Fig.  16  The measured wave train and predicted envelope at the fifth probe (74 m)

    图  17  第10个波高传感器(128 m)处实测波列与预报包络

    Fig.  17  The measured wave train and predicted envelope at the tenth probe (128 m)

    图  18  第12个波高传感器(146 m)处实测波列与预报包络

    Fig.  18  The measured wave train and predicted envelope at the twelfth probe (146 m)

    图  20  Marintek水池实验结果

    Fig.  20  Experiment data at Marintek

    图  21  黎曼θ函数解图像

    Fig.  21  Figure of a Riemann θ function solution

    图  22  实测波列与预报包络对比

    Fig.  22  Comparation between measured wave train and predicted envelope

    图  23  平移后实测波列与预报包络对比

    Fig.  23  Comparation between measured wave train and predicted envelope after translation

    表  1  $A = 1,\;T = 10$ s时实际本征值与仿真结果对比

    Tab.  1  Comparison of real eigenvalues and simulation resultwhen A=1 and T=10 s

    实际本征值位置对应寻优结果
    0.000 0+0.949 4i0.001 1+0.948 7i
    0.000 0+0.778 0i–0.000 7+0.776 9i
    0.000 0+0.334 3i–0.000 2+0.334 2i
    0.761 0+0.000 0i0.762 1+0.001 8i
    –0.761 0+0.000 0i–0.761 7–0.003 3i
    1.211 4+0.000 0i1.212 5+0.001 4i
    –1.211 4+0.000 0i–1.212 2–0.000 5i
    1.597 8+0.000 0i1.600 5+0.000 4i
    –1.597 8+0.000 0i–1.598 7–0.000 7i
    1.958 6+0.000 0i1.954 0+0.000 4i
    –1.958 6+0.000 0i–1.960 9–0.000 0i
    2.305 8+0.000 0i2.306 9+0.000 7i
    –2.305 8+0.000 0i–2.304 9–0.002 3i
    2.644 7+0.000 0i2.644 4+0.000 3i
    –2.644 7+0.000 0i–2.644 4+0.000 3i
    2.978 2+0.000 0i2.976 1+0.002 7i
    –2.978 2+0.000 0i–2.980 1–0.000 5i
    下载: 导出CSV

    表  2  实测和预测最大波高对比

    Tab.  2  Comparison of measured max wave height and predicted result of each probe

    波高传感器与造波板距离/m实测最大波高/m预报最大波高/m相对误差/%
    370.114 30.100 911.74
    550.094 50.113 219.74
    740.124 70.130 84.87
    920.122 60.151 823.78
    1040.165 60.156 815.68
    1130.156 20.172 910.74
    1220.160 90.175 69.12
    1280.178 30.174 62.06
    1370.187 70.168 210.39
    1460.163 60.158 72.99
    1550.166 30.148 810.52
    1650.161 40.137 015.12
    1740.152 80.127 316.69
    1820.142 60.118 616.78
    1920.132 20.110 616.36
    2010.121 20.104 313.88
    2100.103 90.099 44.29
    2190.106 40.094 611.13
    2260.107 00.091 614.36
    2290.113 40.090 220.50
    下载: 导出CSV

    表  3  各波高传感器处实测波列与预测包络对比

    Tab.  3  Comparison of measured wave train and predicted envelope of each probe

    与造波板距离/m实测最大波高/m预报最大波高/m幅值相对误差/%时间偏差/s
    300.065 80.065 50.480.55
    350.067 70.068 61.330.55
    400.074 60.072 13.250.68
    450.077 00.076 21.110.68
    600.097 10.090 66.711.25
    650.108 10.096 310.881.25
    700.104 60.101 43.101.49
    750.117 60.106 59.441.49
    800.128 00.110 513.691.49
    850.121 60.112 67.391.61
    下载: 导出CSV
  • [1] Zakharov V E. Stability of periodic waves of finite amplitude on the surface of a deep fluid[J]. Journal of Applied Mechanics and Technical Physics, 1968, 9(2): 190−194.
    [2] Yuen H C, Lake B M. Nonlinear dynamics of deep-water gravity waves[J]. Advances in Applied Mechanics, 1982, 22: 67−229. doi: 10.1016/S0065-2156(08)70066-8
    [3] Lax P D. Integrals of nonlinear equations of evolution and solitary waves[J]. Communications on Pure and Applied Mathematics, 1968, 21(5): 467−490. doi: 10.1002/cpa.3160210503
    [4] Zakharov V E, Shabat A B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media[J]. Journal of Mathematical Physics, 1972, 34(7): 62−69.
    [5] Its A R, Kotlyarov V R. Explicit formulas for solutions of a nonlinear Schrödinger equation[J]. Dopovidi Akademiï Nauk Ukraïns’koï RSR: Seria A, 1976(11): 965−968, 1051.
    [6] Tracy E R, Chen H H. Nonlinear self-modulation: An exactly solvable model[J]. Physical Review A, 1988, 37(3): 815−839. doi: 10.1103/PhysRevA.37.815
    [7] Osborne A R. Nonlinear ocean wave and the inverse scattering transform[M]//Pike R, Sabatier P. Burlington: Academic Press, 2002: 271-598.
    [8] 华敏, 李响. 基于近邻刺激的改进粒子群优化算法[J]. 数学的实践与认识, 2018, 48(1): 199−206.

    Hua Min, Li Xiang. A particle swarm optimization algorithm based on neighbor stimulate[J]. Mathematics in Practice and Theory, 2018, 48(1): 199−206.
    [9] 王皓, 高立群, 欧阳海滨. 多种群随机差分粒子群优化算法及其应用[J]. 哈尔滨工程大学学报, 2017, 38(4): 652−660.

    Wang Hao, Gao Liqun, Ouyang Haibin. Multi-population random differential particle swarm optimization and its application[J]. Journal of Harbin Engineering University, 2017, 38(4): 652−660.
    [10] 江文山. 深水区非线性波列调变之研究[D]. 台湾: 国立成功大学, 2005.

    Jiang Wenshan. A study of mokulation of nonlinear wave trains in deep water[D]. Taiwan: National Cheng Kung University, 2005.
  • 加载中
图(23) / 表(3)
计量
  • 文章访问数:  390
  • HTML全文浏览量:  26
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-19
  • 修回日期:  2019-02-02
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-11-25

目录

    /

    返回文章
    返回