留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X波段雷达海面回波谱宽特征研究

纪立佳 张彦敏 王运华 徐延东

纪立佳,张彦敏,王运华,等. X波段雷达海面回波谱宽特征研究[J]. 海洋学报,2019,41(7):149–158,doi:10.3969/j.issn.0253−4193.2019.07.014
引用本文: 纪立佳,张彦敏,王运华,等. X波段雷达海面回波谱宽特征研究[J]. 海洋学报,2019,41(7):149–158,doi:10.3969/j.issn.0253−4193. 2019.07.014
Ji Lijia,Zhang Yanmin,Wang Yunhua, et al. Research on the spectral width of the X-band radar clutter backscattered from sea surface[J]. Haiyang Xuebao,2019, 41(7):149–158,doi:10.3969/j.issn.0253−4193.2019.07.014
Citation: Ji Lijia,Zhang Yanmin,Wang Yunhua, et al. Research on the spectral width of the X-band radar clutter backscattered from sea surface[J]. Haiyang Xuebao,2019, 41(7):149–158,doi:10.3969/j.issn.0253−4193. 2019.07.014

X波段雷达海面回波谱宽特征研究

doi: 10.3969/j.issn.0253-4193.2019.07.014
基金项目: 航空科学基金(201720S0001);国家自然科学基金(41576170,41376179)。
详细信息
    作者简介:

    纪立佳(1993—),女,河北省石家庄市人,主要从事微波海洋遥感研究。E-mail: 17853252370@163.com

    通讯作者:

    张彦敏,女,副教授,主要从事海面电磁散射特性和海面SAR目标探测等研究。E-mail: yanminzhang@ouc.edu.cn

  • 中图分类号: TN959

Research on the spectral width of the X-band radar clutter backscattered from sea surface

  • 摘要: 海面电磁回波频谱宽度与海浪波高密切相关,可应用频谱宽度进行海浪有效波高反演。本文应用线性滤波法仿真出了海表散射面元在雷达视向上的投影速度,建立了回波谱宽模型,分析了雷达空间分辨率、回波时间序列长度及海洋环境参数等因素对频谱宽度的影响,同时还针对如何在实际观测过程中选择回波时间序列长度、观测方位角等参数进行了讨论。最后还将理论结果与CSIR-X波段雷达实测数据谱宽估计结果进行了比较。结果表明,剔除雷达噪声以及频率泄露的影响后,基于高斯分布标准偏差的谱宽估计方法所得结果与理论结果吻合很好,这从而证明了理论结果的可靠性。本文所得结果对海浪有效波高反演具有一定参考价值。
  • 图  1  雷达空间分辨率、回波时间采样长度和海浪波高对谱宽的影响

    Fig.  1  The influences of spatial resolution, time sampling length and wave height on spectral width

    图  2  雷达方位角、海浪有效波高等因素对不同入射角回波谱宽的影响(${\rho _{{t}}} = 15\;{\rm{s}}$${\rho _x} = {\rho _y} = 200\;{\rm{m}}$

    Fig.  2  For different radar incident angle, the influences of azimuth angle and effective wave height on spectral width (${\rho _{{t}}} = 15\;{\rm{s}}$${\rho _x} = {\rho _y} = 200\;{\rm{m}}$)

    图  3  雷达方位角、海浪有效波高等因素对不同入射角回波谱宽的影响(${\rho _{{t}}} = 1\;{\rm{s}}$${\rho _x} = {\rho _y} = 15\;{\rm{m}}$

    Fig.  3  For different radar incident angle, the influences of azimuth angle and effective wave height on spectral width (${\rho _{{t}}} = 1\;{\rm{s}}$, ${\rho _x} = {\rho _y} = 15\;{\rm{m}}$)

    图  4  不同回波时间序列时,Q值随Doppler频率变化

    Fig.  4  The value of Q with the Doppler frequency for different T

    图  5  不同估计方法所得谱宽随波高的变化

    Fig.  5  For different estimation methods, the value of spectral width with wave height

    图  6  不同的谱宽估计方法结果和理论结果的比较

    Fig.  6  Comparison of the theoretical results with spectral width

    图  7  不同回波时间序列及观测条件下的功率谱

    Fig.  7  Power spectrum under different time series and observation

    图  8  不同观测条件下,长时谱宽与短时谱宽的散点图

    Fig.  8  Comparison scatter plots between the spectral width for T=30 s and for T=1 s for different observation

    表  1  实测样本数据参数信息

    Tab.  1  Measured sample data parameter information

    数据集距离单元掠射角
    /(°)
    方位角
    $\varphi /$(°)
    有效波高
    H/m
    Dataset_08_069_CStFA37~496.86~16.602.14
    Dataset_09_011_TTrFA68~805.56~10.602.83
    Dataset_06_093_CStFA33~706.86~16.602.91
    Dataset_02_029_CStFA19~347.28~14.603.00
    Dataset_06_064_TTrFA24~376.14~12.903.22
    Dataset_05_081_CStFA20~886.86~16.603.33
    Dataset_05_027_CStFA39~596.86~16.603.68
    下载: 导出CSV

    表  2  线性方程的参数ab

    Tab.  2  Parameters a, b of the linear equation

    谱宽ab
    理论模拟谱宽8.5518.84
    $\Delta {f_1}$10.3017.81
    $\Delta {f_2}$8.5617.55
    $\Delta {f_3}$8.7012.21
    下载: 导出CSV

    表  3  实测结果与理论结果之间的偏差与标准偏差

    Tab.  3  Deviation and standard deviation between measured results and theoretical results

    比较方式偏差标准偏差
    $\Delta {f_1}$与理论结果4.583.47
    $\Delta {f_2}$与理论结果-1.091.98
    $\Delta {f_3}$与理论结果-6.015.58
    下载: 导出CSV
  • [1] Crombie D D. Doppler spectrum of sea echo at 13.56 Mc./s.[J]. Nature, 1955, 175(4459): 681−682. doi: 10.1038/175681a0
    [2] Barrick D. First-order theory and analysis of MF/HF/VHF scatter from the sea[J]. IEEE Transactions on Antennas and Propagation, 1972, 20(1): 2−10. doi: 10.1109/TAP.1972.1140123
    [3] Zavorotny V U, Voronovich A G. Two-scale model and ocean radar Doppler spectra at moderate-and low-grazing angles[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(1): 84−92. doi: 10.1109/8.655454
    [4] Toporkov J V, Brown G S. Numerical simulations of scattering from time-varying, randomly rough surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(4): 1616−1625. doi: 10.1109/36.851961
    [5] Toporkov J V, Brown G S. Numerical study of the extended Kirchhoff approach and the lowest order small slope approximation for scattering from ocean-like surfaces: Doppler analysis[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(4): 417−425. doi: 10.1109/TAP.2002.1003376
    [6] Wang Yunhua, Zhang Yanmin. Investigation on Doppler shift and bandwidth of backscattered echoes from a composite sea surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(3): 1071−1081. doi: 10.1109/TGRS.2010.2070071
    [7] Wang Yunhua, Zhang Yanmin, He Mingxia, et al. Doppler spectra of microwave scattering fields from nonlinear oceanic surface at moderate- and low-grazing angles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(4): 1104−1116. doi: 10.1109/TGRS.2011.2164926
    [8] Wang Yunhua, Zhang Yanmin, Guo Lixin. Microwave Doppler spectra of sea echoes at high incidence angles: influences of large-scale waves[J]. Progress in Electromagnetics Research B, 2013, 48: 99−113. doi: 10.2528/PIERB12123004
    [9] Walker D. Experimentally motivated model for low grazing angle radar Doppler spectra of the sea surface[J]. IEEE Proceedings-Radar, Sonar and Navigation, 2000, 147(3): 114−120. doi: 10.1049/ip-rsn:20000386
    [10] Rozenberg A D, Quigley D C, Melville W K. Laboratory study of polarized microwave scattering by surface waves at grazing incidence: the influence of long waves[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(6): 1331−1342. doi: 10.1109/36.544557
    [11] Rozenberg A D, Quigley D C, Melville W K. Laboratory study of polarized scattering by surface waves at grazing incidence. I. Wind waves[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 33(4): 1037−1046.
    [12] Corretja V, Meslot V, Kemkemian S, et al. Statistical analysis on sea clutter Doppler properties in X-band for low grazing angles[C]//2017 IEEE Radar Conference (RadarConf). Seattle, WA, USA: IEEE, 2017.
    [13] 张金鹏, 张玉石, 李清亮, 等. 基于不同散射机制特征的海杂波时变多普勒谱模型[J]. 物理学报, 2018, 67(3): 106−116.

    Zhang Jinpeng, Zhang Yushi, Li Qingliang, et al. A time-varying Doppler spectrum model of radar sea clutter based on different scattering mechanisms[J]. Acta Physica Sinica, 2018, 67(3): 106−116.
    [14] Fiche A, Angelliaume S, Rosenberg L, et al. Statistical analysis of low grazing angle high resolution X-band SAR sea clutter[C]//2014 International Radar Conference. Lille, France: IEEE, 2014.
    [15] Watts S, Rosenberg L, Bocquet S, et al. Doppler spectra of medium grazing angle sea clutter; part 1: characterisation[J]. IET Radar, Sonar & Navigation, 2016, 10(1): 24−31.
    [16] Wang Yunhua, Li Huimin, Zhang Yanmin, et al. The measurement of sea surface profile with X-band coherent marine radar[J]. Acta Oceanologica Sinica, 2015, 34(9): 65−70. doi: 10.1007/s13131-015-0731-7
    [17] Wang Yunhua, Li Qun, Zhang Yanmin. A statistical distribution of quad-pol X-band sea clutter time series acquired at a grazing angle[J]. Acta Oceanologica Sinica, 2018, 37(3): 94−102. doi: 10.1007/s13131-018-1202-8
    [18] Tsang L, Chan C H, Pak K, et al. Monte-Carlo simulations of large-scale problems of random rough surface scattering and applications to grazing incidence with the BMIA/canonical grid method[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(8): 851−859. doi: 10.1109/8.402205
    [19] Elfouhaily T, Chapron B, Katsaros K, et al. A unified directional spectrum for long and short wind-driven waves[J]. Journal of Geophysical Research: Oceans, 1997, 102(C7): 15781−15796. doi: 10.1029/97JC00467
    [20] Keller W C, Plant W J, Petitt R A Jr, et al. Microwave backscatter from the sea: Modulation of received power and Doppler bandwidth by long waves[J]. Journal of Geophysical Research: Oceans, 1994, 99(C5): 9751−9766. doi: 10.1029/94JC00082
    [21] 葛凤翔, 孟华东, 彭应宁, 等. 杂波谱中心和谱宽估计方法[J]. 清华大学学报:自然科学版, 2002, 42(7): 941−944.

    Ge Fengxiang, Meng Huadong, Peng Yingning, et al. Clutter central frequency and bandwidth estimation methods[J]. Journal of Tsinghua University: Science and Technology, 2002, 42(7): 941−944.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  438
  • HTML全文浏览量:  16
  • PDF下载量:  267
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-26
  • 修回日期:  2018-12-26
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-07-25

目录

    /

    返回文章
    返回