Analysis and correction of GIM error about Jason-2 altimeter
-
摘要: 基于Jason-2高度计2015年地球物理数据集(GDR)38个周期太平洋海域的全球电离层图(GIM)电离层校正值和双频校正值的数据,分不同季度和不同纬度区域比较二者的差异,结果表明:GIM值与双频校正值之间存在明显的差异,GIM校正值普遍高于双频校正值,说明GIM高估了电离层路径延迟,GIM校正值与双频校正值的差异与季节和纬度区间有关。用梯度下降法得到GIM值的修正方程,将修正方程应用于2016年Jason-2的全年数据,修正后的GIM值与双频校正值十分接近,在各年份中均具有良好的适用性。在单频高度计不能使用电离层双频校正算法的情况下,可以利用不同季度和不同纬度区域的修正方程对同等高度的高度计GIM值进行修正以达到双频校正值的精度水平。Abstract: Based on the ionospheric correction data of Global Ionospheric Map (GIM) and dual-frequency, extracting the Pacific Ocean dataset from the Jason-2 Altimeter’s Geophysical Data Set (GDR) including 38-period in 2015. The dataset is divided into small twelve cell according to the features of ionosphere over seasons and in latitude. The result shows that there is a significant difference between the GIM and the dual-frequency correction value, and the GIM correction value is generally higher than the dual-frequency correction value, indicating that GIM overestimates the ionosphere path delay, also, the difference between the GIM and the dual-frequency is related to the season and latitude. Applying the modified equation to the 2016 Jason-2 annual data, the corrected GIM value is very close to the dual-frequency correction value, and the applicability of the modified equation remains the same over time. In the case where the single-frequency altimeter cannot use the ionospheric dual-frequency correction algorithm, the GIM value of the altimeter of the same height can be corrected by using the correction equations of different quarters and different latitude regions to achieve the accuracy level of the dual-frequency correction value.
-
表 1 太平洋全域、全年DF值与GIM值的统计结果
Tab. 1 The overall of the Pacific Ocean and annual statistical result of DF and GIM
MDF/cm SDF/cm MGIM/cm SGIM/cm M(DF-GIM)/cm S(DF-GIM)/cm 4.73 3.45 5.46 3.79 –0.73 1.04 表 2 不同季度及不同区域DF值与GIM值统计结果
Tab. 2 The satistics of DF and GIM in different quarters and different regions
区域 季度 MDF/cm SDF/cm MGIM/cm SGIM/cm M(DF-GIM)/cm S(DF-GIM)/cm 北中纬 1 3.61 2.87 4.45 3.19 −0.84 0.88 2 5.19 2.64 6.18 2.91 −0.99 0.92 3 3.43 1.70 4.01 1.87 −0.58 0.77 4 2.52 1.74 2.97 1.93 −0.45 0.72 低纬度 1 8.73 5.41 9.81 5.74 −1.08 1.48 2 7.70 4.35 9.01 4.64 −1.31 1.37 3 5.27 2.88 6.26 3.22 −0.99 1.08 4 6.20 3.80 6.91 4.05 −0.71 1.21 南中纬 1 5.62 2.32 6.35 2.56 −0.73 0.99 2 3.15 1.66 3.65 1.95 −0.51 0.82 3 2.29 1.15 2.55 1.37 −0.26 0.67 4 4.14 1.63 4.60 1.84 −0.46 0.80 表 3 修正方程系数及r值
Tab. 3 The coefficient and r value of the correction equation
区域季度 α β r 北中纬 1 0.83 0.01 0.92 2 0.84 −0.01 0.93 3 0.85 −0.02 0.93 4 0.85 −0.02 0.94 低纬度 1 0.89 0.01 0.95 2 0.86 0.01 0.92 3 0.84 −0.01 0.94 4 0.90 −0.01 0.96 南中纬 1 0.88 −0.02 0.96 2 0.84 −0.03 0.98 3 0.86 −0.04 0.99 4 0.88 −0.03 0.99 表 4 GIM修正前后指标评价
Tab. 4 Evaluation of before and after GIM corrections
区域 季度 修正前 修正后 M(DF-GIM)/cm S(DF-GIM)/cm M(DF-GIM)/cm S(DF-GIM)/cm 北中纬 1 −1.16 0.88 −0.47 0.80 2 −1.36 0.93 −0.48 0.85 3 −0.77 0.84 −0.04 0.76 4 −0.59 0.84 −0.04 0.70 低纬度 1 −1.37 1.24 −0.53 1.19 2 −1.43 1.36 −0.33 1.23 3 −1.07 1.23 −0.11 1.14 4 −0.89 1.31 −0.06 1.20 南中纬 1 −0.90 1.00 −0.30 0.92 2 −0.81 0.99 −0.29 0.80 3 −0.33 0.78 −0.12 0.68 4 −0.56 1.02 −0.12 0.91 -
[1] 张有广, 贾永君, 范陈清, 等. 海洋二号卫星雷达高度计测高误差校正算法及验证[J]. 中国工程科学, 2013, 15(7): 53−61. doi: 10.3969/j.issn.1009-1742.2013.07.008Zhang Youguang, Jia Yongjun, Fan Chenqing, et al. HY-2A satellite radar altimeter error correction algorithm and verification[J]. Engineering Science, 2013, 15(7): 53−61. doi: 10.3969/j.issn.1009-1742.2013.07.008 [2] 张婷, 张杰, 崔廷伟, 等. 卫星高度计电离层校正模型比较分析[J]. 遥感技术与应用, 2012, 27(4): 511−516. doi: 10.11873/j.issn.1004-0323.2012.4.511Zhang Ting, Zhang Jie, Cui Tingwei, et al. Analysis of the ionosphere correct model for the satellite altimeter[J]. Remote Sensing Technology and Application, 2012, 27(4): 511−516. doi: 10.11873/j.issn.1004-0323.2012.4.511 [3] 李子申, 王宁波, 李敏, 等. 国际GNSS服务组织全球电离层TEC格网精度评估与分析[J]. 地球物理学报, 2017, 60(10): 3718−3729. doi: 10.6038/cjg20171003Li Zishen, Wang Ningbo, Li Min, et al. Evaluation and analysis of the global ionospheric TEC map in the frame of international GNSS services[J]. Chinese Journal of Geophysics, 2017, 60(10): 3718−3729. doi: 10.6038/cjg20171003 [4] Feltens J, Schaer S. IGS products for the ionosphere[C]//Proceeding of IGS 1998 Analysis Center Workshop, ESOC. Darmstadt, Germany, 1998: 225–232. [5] Schaer S. GNSS ionosphere analysis at CODE[C]//2004 IGS Workshop. Berne, Switzerland, 2014. [6] Feltens J, Schaer S. IGS products for the ionosphere, IGS position paper[C]//Proceedings of the IGS Analysis Centers Workshop. Darmstadt, Germany: ESOC, 1998. [7] Mannucci A J, Wilson B D, Yuan D N, et al. A global mapping technique for GPS‐derived ionospheric total electron content measurements[J]. Radio Science, 1998, 33(3): 565−582. doi: 10.1029/97RS02707 [8] Hernández-Pajares M, Juan J M, Sanz J. New approaches in global ionospheric determination using ground GPS data[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 1999, 61(16): 1237−1247. doi: 10.1016/S1364-6826(99)00054-1 [9] Feltens J. IGS ionosphere models comparison[R]. JPL Ionosphere Workshop. Pasadena, CA: JPL Ionosphere Workshop, 1998. [10] 余涛, 万卫星, 刘立波, 等. 利用IGS数据分析全球TEC的周年和半年变化特性[J]. 地球物理学报, 2006, 49(4): 943−949. doi: 10.3321/j.issn:0001-5733.2006.04.003Yu Tao, Wan Weixing, Liu Libo, et al. Using IGS data to analysis the global TEC annual and semiannual variation[J]. Chinese Journal of Geophysics, 2006, 49(4): 943−949. doi: 10.3321/j.issn:0001-5733.2006.04.003 [11] Jee G, Lee H, Kim Y H, et al. Assessment of GPS global ionosphere maps (GIM) by comparison between CODE GIM and Topex/Jason TEC data: Ionospheric perspective[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(A10)−A10319. [12] 金涛勇, 胡敏章, 蒋涛, 等. 卫星测高资料的电离层延迟改正交叉检验与误差分析[J]. 武汉大学学报: 信息科学版, 2012, 37(6): 658−661.Jin Taoyong, Hu Minzhang, Jiang Tao, et al. Cross-calibration and errors analysis of ionosphere correction in satellite altimetry[J]. Ucomatics and Information Scicnce of Wuhan University, 2012, 37(6): 658−661. [13] Imel D A. Evaluation of the TOPEX/POSEIDON dual-frequency ionosphere correction[J]. Journal of Geophysical Research: Oceans, 1994, 99(C12): 24895−24906. doi: 10.1029/94JC01869 -