留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄河口埕岛海域粉土波致孔压现场监测

杜星 孙永福 宋玉鹏 赵晓龙 周其坤

杜星,孙永福,宋玉鹏,等. 黄河口埕岛海域粉土波致孔压现场监测[J]. 海洋学报,2019,41(7):116–122,doi:10.3969/j.issn.0253−4193.2019.07.010
引用本文: 杜星,孙永福,宋玉鹏,等. 黄河口埕岛海域粉土波致孔压现场监测[J]. 海洋学报,2019,41(7):116–122,doi:10.3969/j.issn.0253−4193. 2019.07.010
Du Xing,Sun Yongfu,Song Yupeng, et al. In site monitoring of wave-induced pore pressure of silt in Chengdao sea area of Yellow River Estuary[J]. Haiyang Xuebao,2019, 41(7):116–122,doi:10.3969/j.issn.0253−4193.2019.07.010
Citation: Du Xing,Sun Yongfu,Song Yupeng, et al. In site monitoring of wave-induced pore pressure of silt in Chengdao sea area of Yellow River Estuary[J]. Haiyang Xuebao,2019, 41(7):116–122,doi:10.3969/j.issn.0253−4193. 2019.07.010

黄河口埕岛海域粉土波致孔压现场监测

doi: 10.3969/j.issn.0253-4193.2019.07.010
基金项目: 国家海洋公益性行业科研专项(201005005);国家重点研发计划项目(2017YFC0307305)。
详细信息
    作者简介:

    杜星(1991—),男,辽宁省大连市人,助理工程师,主要从事海洋工程地质与灾害地质方面研究

    通讯作者:

    孙永福,研究员,主要从事海洋工程地质与灾害地质方面研究。E-mail: sunyongfu@fio.org.cn

  • 中图分类号: P75; TU43

In site monitoring of wave-induced pore pressure of silt in Chengdao sea area of Yellow River Estuary

  • 摘要: 波浪会对海床产生反复的作用力,由此引起的土体颗粒间孔隙水压力变化是造成土体液化的主要原因。使用自行研发的孔压监测设备,对黄河口埕岛海域易液化区海底孔压进行了长时间、高精度的观测,并对孔隙水压力、波高以及潮位间的关系进行分析。监测结果显示,本次监测条件下波浪最大作用深度介于0.5~1.5 m之间,超过该作用深度后孔压无明显变化。土体内部孔隙水压力的变化主要由潮位和波高决定,潮位的作用可使孔压缓慢平滑的变化且对超孔压无影响;波高的作用可使孔压快速、剧烈地振荡并导致超孔压的出现。
  • 图  1  研究区位置

    Fig.  1  Location of studying area

    图  2  孔压监测探杆

    Fig.  2  Pore pressure monitoring probes

    图  3  孔压探杆贯入机具

    Fig.  3  Pore pressure probe penetration equipment

    图  4  贯入机具控制箱

    Fig.  4  Control box of penetration equipment

    图  5  贯入设备整体结构

    Fig.  5  Overall structure of penetration equipment

    图  6  总孔隙水压力、波高及潮位随时间的变化

    a–d曲线分别代表海床以下0.5 m、1.5 m、2.5 m和3.5 m位置孔压变化,S表示有明显孔压响应条件的区域

    Fig.  6  Total pore pressure, wave height and tide level vary with time

    a–d represent pore pressure variation in 0.5 m、1.5 m、2.5 m and 3.5 m depth under the seabed. S represents the area that pore pressure response obviously

    图  7  水深变化

    Fig.  7  Variation of water depth

    图  8  无潮位孔隙水压力(即为总孔隙水压力减去潮位变换引起的水压力)

    a–d曲线分别代表海床以下0.5 m、1.5 m、2.5 m和3.5 m位置孔压变化

    Fig.  8  Total pore pressure without tide level’s affection (obtained by total pore pressure minus pore pressure induced by tide)

    a–d represent pore pressure variation in 0.5 m、1.5 m、2.5 m and 3.5 m depth under the seabed

    图  9  超孔隙水压力随时间变化

    Fig.  9  Excess pore pressure vary with time

    表  1  参数统计结果

    Tab.  1  Statistics result of parameters

    黏粒含量/%含水量/%容重/kN·m−3孔隙比
    平均10.9425.7419.7215.70
    数据个数108156151147
    标准差4.013.150.550.81
    液限/%塑限/%黏聚力/kPa内摩擦角/(°)
    平均0.7127.7520.0016.11
    数据个数147152152131
    标准差0.082.972.155.06
    下载: 导出CSV
  • [1] Putnam A P J. Loss of wave energy due to percolation in a permeable sea bottom[J]. Transactions, American Geophysical Union, 1949, 30(3): 349−356. doi: 10.1029/TR030i003p00349
    [2] Sleath J F A. Wave induced pressures in beds of sand[J]. Journal of the Hydraulics Division, 1970, 96: 367−378.
    [3] Moshagen H, Torum A. Wave induced pressures in permeable seabeds[J]. Journal of the Waterways, Harbors and Coastal Engineering Division, 2010, 101(1): 49−57.
    [4] Yamamoto T, Koning H L, Sellmeijer H, et al. On the response of a poro-elastic bed to water waves[J]. Journal of Fluid Mechanics, 1978, 87: 193−206. doi: 10.1017/S0022112078003006
    [5] Biot M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2): 155−164. doi: 10.1063/1.1712886
    [6] Thomas S D. A finite element model for the analysis of wave induced stresses, displacements and pore pressure in an unsaturated seabed Ⅱ:model verification[J]. Computers and Geotechnics, 1995, 17(1): 107−132.
    [7] Jeng D S, Seymour B R, Li J. A new approximation for pore pressure accumulation in marine sediment due to water waves[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2007, 31(1): 53−69. doi: 10.1002/(ISSN)1096-9853
    [8] Zhang J S, Zhang Y, Zhang C, et al. Numerical modeling of seabed response to combined wave-current loading[J]. Journal of Offshore Mechanics and Arctic Engineering, 2013, 135(3): 031102. doi: 10.1115/1.4023203
    [9] Liao C C, Jeng D S, Zhang L L. An analytical approximation for dynamic soil response of a porous seabed due to combined wave and current loading[J]. Journal of Coastal Research, 2015, 31(5): 1120−1128.
    [10] Liu B, Jeng D S, Ye G L, et al. Laboratory study for pore pressures in sandy deposit under wave loading[J]. Ocean Engineering, 2015, 106: 207−219. doi: 10.1016/j.oceaneng.2015.06.029
    [11] Ye Jianhong, Jeng D S. Response of porous seabed to nature loadings: waves and currents[J]. Journal of Engineering Mechanics, 2012, 138(6): 601−613. doi: 10.1061/(ASCE)EM.1943-7889.0000356
    [12] Ye Jianhong, Wang Gang. Numerical simulation of the seismic liquefaction mechanism in an offshore loosely deposited seabed[J]. Bulletin of Engineering Geology and the Environment, 2016, 73(3): 1183−1197.
    [13] Ye Jianhong, Huang Duruo, Wang Gang. Nonlinear dynamic simulation of offshore breakwater on sloping liquefied seabed[J]. Bulletin of Engineering Geology and the Environment, 2016, 73(3): 1215−1225.
    [14] Ye Jianhong, Jeng D S, Chan A H C, et al. 3D integrated numerical model for fluid-structures-seabed interaction (FSSI): elastic dense seabed foundation[J]. Ocean Engineering, 2016, 115: 107−122. doi: 10.1016/j.oceaneng.2016.01.003
    [15] Tzang S Y. Water wave-induced soil fluidization in a cohesionless fine-grained seabed[D]. Berkeley: University of California, 1992.
    [16] Zen K, Yamazaki H. Mechanism of wave-induced liquefaction and densification in seabed[J]. Soils and Foundations, 1990, 30(4): 90−104.
    [17] 刘红军, 刘莹, 张民生. 波浪作用下黄河口粉土液化与振荡层形成试验研究[J]. 中国海洋大学学报, 2009, 39(5): 1013−1018.

    Liu Hongjun, Liu Ying, Zhang Minsheng. Study on liquefaction of silty soil and the development of surging layer under wave actions at Yellow River estuary[J]. Periodical of Ocean University of China, 2009, 39(5): 1013−1018.
    [18] Xu Guohui, Sun Yongfu, Wang Xin, et al. Wave-induced shallow slides and their features on the subaqueous Yellow River delta[J]. Canadian Geotechnical Journal, 2009, 46(12): 1406−1417.
    [19] 许国辉, 贾永刚, 郑建国, 等. 黄河水下三角洲塌陷凹坑构造形成的水槽试验研究[J]. 海洋地质与第四纪地质, 2004, 24(3): 37−40.

    Xu Guohui, Jia Yonggang, Zheng Jianguo, et al. Flume test formed by collapse in the Yellow River subaqueous delta[J]. Marine Geology & Quaternary Geology, 2004, 24(3): 37−40.
    [20] Bennett R H. Pore-water pressure measurements: Mississippi delta submarine sediments[J]. Marine Geotechnology, 1977, 2(1/4): 177−189. doi: 10.1080/10641198009379819
    [21] Okusa S, Uchida A. Pore-water pressure change in submarine sediments due to waves[J]. Marine Geotechnology, 1980, 4(2): 145−161. doi: 10.3208/sandf1972.31.4_161
    [22] Zen K, Yamazaki H. Field observation and analysis of wave-induced liquefaction in seabed[J]. Soils and Foundations, 1991, 31(4): 161−179.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  442
  • HTML全文浏览量:  32
  • PDF下载量:  256
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-02
  • 修回日期:  2018-08-31
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-07-25

目录

    /

    返回文章
    返回