Study on various response to typhoon of nourished beaches with different sediments
-
摘要: 本文通过对厦门天泉湾人工卵石滩和会展人工沙滩在1614“莫兰蒂”超强台风影响前后的典型剖面监测,结合水文动力要素的观测和数值模拟,计算了台风影响过程的波浪场、总水位,分析了剖面形态和台风过程的剖面平均变化量。结果表明,强潮海岸人工卵石滩与人工沙滩对台风响应的特征明显不同,人工卵石滩横向上大部分卵石向岸输移堆积,滩面侵蚀,滩肩堆积形成更高的风暴滩肩,坡度明显变陡。而人工沙滩则表现为明显的沉积物离岸输运,上部滩面侵蚀,下部滩面淤积,滩面坡度明显变缓,受台风登陆后的强烈向岸风作用,滩肩顶有所夷平,滩肩高度变化很小。海滩滩肩在台风过程中是否侵蚀与台风登陆和影响过程的总水位(天文潮、风暴增水、波浪爬高)密切相关,两个人工海滩的风暴响应模式均为冲蚀;台风影响过程中,波浪能量相对强、滩面坡度相对陡的人工卵石滩比人工沙滩的剖面平均变化量小,对于台风的响应程度小,在强侵蚀高能海岸采用砾石等粗粒径沉积物进行海滩养护是减缓砂质海滩侵蚀的一种有效手段。Abstract: By monitoring the typical profiles of the artificial cobble and sandy beach on Xiamen Tianquan Bay and Huizhan before and after the super Typhoon No.1614 Meranti, combined with the observation and numerical simulation of hydrodynamic factors, we calculate the wave field together with the total water level during the typhoon process, and analyze the morphology and the average variation of the profile. Results show that the characteristics of response to typhoon between artificial cobble and sandy beach on macro-tidal coast are significantly different. The majority of cobbles transported onshore, the beach face eroded while the beach berm accumulated to form a higher beach berm, and the slope of the artificial cobble beach is obviously steepened. In contract, the artificial sandy beach shows obvious sediment transport offshore, the upper beach face eroded and the lower beach face deposited, the slope of the beach face obviously become gentler, moreover the top of the beach berm become flattened due to the strong onshore wind after the typhoon landing, and the height of the beach berm almost remain unchanged. Whether the beach berm eroded during typhoon process is closely related to the total water level including astronomical tide, storm surge and wave run-up. During the process of typhoon, the artificial cobble beach characterized with higher wave energy and steeper beach slope showed less profile variation comparing to that of the artificial sandy beach. The artificial cobble beach performed a small degree of response to typhoon. Taken together, it is an effective approach of slowing sandy beach erosion by using gravels and other coarse-grained sediments for beach nourishment on strong eroded high-energy macro-tidal coasts.
-
Key words:
- macro-tidal coast /
- artificial cobble beach /
- artificial sandy beach /
- typhoon response
-
表 1 海滩养护工程基本情况
Tab. 1 The overview of the beach nourishment project
海滩 岸段长度/m 养护沉积物总量/104 m3 养护沉积物粒径/mm 施工滩肩宽度/m 施工滩面宽度/m 滩肩高程/m 初始坡度 天泉湾人工卵石滩 632 5.71 50~100 13~20 35~46.5 4.0 1:5 会展人工沙滩 1 795 74.75 0.5 50 100~150 4.0 1:15 表 2 “莫兰蒂”台风过程人工海滩波浪能量–剖面变化
Tab. 2 Wave energy and variations of artificial beach profile during Typhoon Meranti
海滩 中值粒径/mm 最大波浪能量/kW·m−1 平均波浪能量/kW·m−1 最大剖面平均变化量/m 剖面平均变化量/m 天泉湾人工卵石滩 70 12 259 1 937 0.30 0.20 会展人工沙滩 0.5 7 097 1 820 0.46 0.28 -
[1] Bruun P. The Bruun rule of erosion by sea-level rise: a discussion on large-scale two- and three-dimensional usages[J]. Journal of Coastal Research, 1988, 4(4): 627−648. [2] Cai Feng, Su Xianze, Liu Jianhui, et al. Coastal erosion in China under the condition of global climate change and measures for its prevention[J]. Progress in Natural Science, 2009, 19(4): 415−426. doi: 10.1016/j.pnsc.2008.05.034 [3] van Rijn L C. Coastal erosion and control[J]. Ocean & Coastal Management, 2011, 54(12): 867−887. [4] Neumann B, Vafeidis A T, Zimmermann J, et al. Future coastal population growth and exposure to sea-level rise and coastal flooding–a global assessment[J]. PloS One, 2015, 10(3): e0118571. doi: 10.1371/journal.pone.0118571 [5] Steers J A. Coastline changes: a global review by Eric C. F. Bird[J]. Geographical Journal, 1986, 152(1): 108. [6] Dixon K L, Pilkey Jr O H. Summary of beach replenishment on the U.S. Gulf of Mexico shoreline[J]. Journal of Coastal Research, 1991, 7(1): 249−256. [7] Hanson H, Brampton A, Capobianco M, et al. Beach nourishment projects, practices, and objectives—a European overview[J]. Coastal Engineering, 2002, 47(2): 81−111. doi: 10.1016/S0378-3839(02)00122-9 [8] 迪安R G. 海滩养护: 理论与实践[M]. 蔡锋, 曹惠美, 刘建辉, 译. 北京: 海洋出版社, 2010.Dean R G. Beach Nourishment: Theory and Practice[M]. Cai Feng, Cao Huimei, Liu Jianhui, trans. Beijing: China Ocean Press, 2010. [9] Cai F, Dean R G, Liu J. Beach nourishment: theory and practice[J]. Coastal Engineering Proceedings, 2011, 1(32): 31. [10] 蔡锋, 刘建辉. 中国海滩养护技术手册[M]. 北京: 海洋出版社, 2015.Cai Feng, Liu Jianhui. Chinese Beach Nourishment Manual[M]. Beijing: China Ocean Press, 2015. [11] Aminti P, Cipriani L E, Pranzini E. “Back to the beach”: converting seawalls into gravel beaches[M]//Goudas C, Katsiaris G, May V, et al. Soft Shore Protection. Dordrecht: Springer, 2003, 7: 261−274. [12] Cammelli C, Jackson N L, Nordstrom K F, et al. Assessment of a gravel nourishment project fronting a seawall at Marina di Pisa, Italy[J]. Journal of Coastal Research, 2006, 39(39): 770−775. [13] Bergillos R J, Rodríguez-Delgado C, Ortega-Sánchez M. Advances in management tools for modeling artificial nourishments in mixed beaches[J]. Journal of Marine Systems, 2017, 172: 1−13. doi: 10.1016/j.jmarsys.2017.02.009 [14] 于跃, 蔡锋, 张挺, 等. 人工砾石海滩变化及输移率研究[J]. 海洋工程, 2017, 35(5): 79−87.Yu Yue, Cai Feng, Zhang Ting, et al. Study on evolution and transport rate of artificial gravel beach[J]. The Ocean Engineering, 2017, 35(5): 79−87. [15] Austin M J, Masselink G. Infiltration and exfiltration on a steep gravel beach: implications for sediment transport[C]//Fifth International Conference on Coastal Dynamics. Barcelona, Spain: ASCE, 2005. [16] Pedrozo-Acuña A, Simmonds D J, Reeve D E. Wave-impact characteristics of plunging breakers acting on gravel beaches[J]. Marine Geology, 2008, 253(1/2): 26−35. [17] Haerens P, Bolle A, Trouw K, et al. Definition of storm thresholds for significant morphological change of the sandy beaches along the Belgian coastline[J]. Geomorphology, 2012, 143-144: 104−117. doi: 10.1016/j.geomorph.2011.09.015 [18] Castelle B, Marieu V, Bujan S, et al. Impact of the winter 2013-2014 series of severe Western Europe storms on a double-barred sandy coast: beach and dune erosion and megacusp embayments[J]. Geomorphology, 2015, 238: 135−148. doi: 10.1016/j.geomorph.2015.03.006 [19] Masselink G, Scott T, Poate T, et al. The extreme 2013/2014 winter storms: hydrodynamic forcing and coastal response along the southwest coast of England[J]. Earth Surface Processes and Landforms, 2016, 41(3): 378−391. doi: 10.1002/esp.v41.3 [20] 陈子燊. 弧形海岸海滩地貌对台风大浪的响应特征[J]. 科学通报, 1995, 40(23): 2168−2170. doi: 10.3321/j.issn:0023-074X.1995.23.016Chen Zishen. The response of beach geomorphology of the arc-shaped coast to typhoon waves[J]. Chinese Science Bulletin, 1995, 40(23): 2168−2170. doi: 10.3321/j.issn:0023-074X.1995.23.016 [21] 蔡锋, 苏贤泽, 杨顺良, 等. 厦门岛海滩剖面对9914号台风大浪波动力的快速响应[J]. 海洋工程, 2002, 20(2): 85−90. doi: 10.3969/j.issn.1005-9865.2002.02.016Cai Feng, Su Xianze, Yang Shunliang, et al. A rapid response to 9914 typhoon-induced storm wave force made by the beach profiles of Xiamen Island[J]. The Ocean Engineering, 2002, 20(2): 85−90. doi: 10.3969/j.issn.1005-9865.2002.02.016 [22] 蔡锋, 苏贤泽, 夏东兴. 热带气旋前进方向两侧海滩风暴效应差异研究——以海滩对0307号台风“伊布都”的响应为例[J]. 海洋科学进展, 2004, 22(4): 436−445. doi: 10.3969/j.issn.1671-6647.2004.04.005Cai Feng, Su Xianze, Xia Dongxing. Study on the difference between storm effects of beaches on two sides of the tropical cyclone track—taking the responses of beaches to No.0307 Typhoon Imbudo as an example[J]. Advances in Marine Science, 2004, 22(4): 436−445. doi: 10.3969/j.issn.1671-6647.2004.04.005 [23] 戚洪帅, 蔡锋, 雷刚, 等. 华南海滩风暴响应特征研究[J]. 自然科学进展, 2009, 19(9): 975−985. doi: 10.3321/j.issn:1002-008X.2009.09.011Qi Hongshuai, Cai Feng, Lei Gang, et al. The response characteristics of beaches to tropical storms in South China[J]. Progress in Natural Science, 2009, 19(9): 975−985. doi: 10.3321/j.issn:1002-008X.2009.09.011 [24] Morton R A, Sallenger Jr A H. Morphological impacts of extreme storms on sandy beaches and barriers[J]. Journal of Coastal Research, 2003, 19(3): 560−573. [25] Houser C, Wernette P, Rentschlar E, et al. Post-storm beach and dune recovery: Implications for barrier island resilience[J]. Geomorphology, 2015, 234: 54−63. doi: 10.1016/j.geomorph.2014.12.044 [26] 邵超, 戚洪帅, 蔡锋, 等. 海滩–珊瑚礁系统风暴响应特征研究——以1409号台风“威马逊”对清澜港海岸影响为例[J]. 海洋学报, 2016, 38(2): 121−130. doi: 10.3969/j.issn.0253-4193.2016.02.012Shao Chao, Qi Hongshuai, Cai Feng, et al. Study on storm-effects on beach-coral reef system—Taking the response of Qinglangang Coast on No.1409 Typhoon Rammasun as an example[J]. Haiyang Xuebao, 2016, 38(2): 121−130. doi: 10.3969/j.issn.0253-4193.2016.02.012 [27] Burvingt O, Masselink G, Russell P, et al. Classification of beach response to extreme storms[J]. Geomorphology, 2017, 295: 722−737. doi: 10.1016/j.geomorph.2017.07.022 [28] Splinter K D, Kearney E T, Turner I L. Drivers of alongshore variable dune erosion during a storm event: observations and modelling[J]. Coastal Engineering, 2018, 131: 31−41. doi: 10.1016/j.coastaleng.2017.10.011 [29] Sallenger Jr A H. Storm impact scale for barrier islands[J]. Journal of Coastal Research, 2000, 16(3): 890−895. [30] Qi Hongshuai, Cai Feng, Lei Gang, et al. The response of three main beach types to tropical storms in South China[J]. Marine Geology, 2010, 275(1/4): 244−254. [31] Masselink G, van Heteren S. Response of wave-dominated and mixed-energy barriers to storms[J]. Marine Geology, 2014, 352: 321−347. doi: 10.1016/j.margeo.2013.11.004 [32] de Alegria-Arzaburu A R, Masselink G. Storm response and beach rotation on a gravel beach, Slapton Sands, U.K.[J]. Marine Geology, 2010, 278(1/4): 77−99. [33] Turki I, Medina R, Gonzalez M, et al. Natural variability of shoreline position: observations at three pocket beaches[J]. Marine Geology, 2013, 338: 76−89. doi: 10.1016/j.margeo.2012.10.007 [34] Harley M D, Andriolo U, Armaroli C, et al. Shoreline rotation and response to nourishment of a gravel embayed beach using a low-cost video monitoring technique: San Michele-Sassi Neri, Central Italy[J]. Journal of Coastal Conservation, 2014, 18(5): 551−565. doi: 10.1007/s11852-013-0292-x [35] Grottoli E, Bertoni D, Ciavola P. Short- and medium-term response to storms on three Mediterranean coarse-grained beaches[J]. Geomorphology, 2017, 295: 738−748. doi: 10.1016/j.geomorph.2017.08.007 [36] Bertoni D, Sarti G, Benelli G, et al. Radio Frequency Identification (RFID) technology applied to the definition of underwater and subaerial coarse sediment movement[J]. Sedimentary Geology, 2010, 228(3/4): 140−150. [37] Han Min, Yang D Y, Yu J, et al. Typhoon impact on a pure gravel beach as assessed through gravel movement and topographic change at Yeocha Beach, South Coast of Korea[J]. Journal of Coastal Research, 2017, 33(4): 889−906. doi: 10.2112/JCOASTRES-D-16-00104.1 [38] Ivamy M C, Kench P S. Hydrodynamics and morphological adjustment of a mixed sand and gravel beach, Torere, Bay of Plenty, New Zealand[J]. Marine Geology, 2006, 228(1/4): 137−152. [39] McCall R T, Masselink G, Poate T G, et al. Modelling storm hydrodynamics on gravel beaches with XBeach-G[J]. Coastal Engineering, 2014, 91: 231−250. doi: 10.1016/j.coastaleng.2014.06.007 [40] McCall R T, Masselink G, Poate T G, et al. Modelling the morphodynamics of gravel beaches during storms with XBeach-G[J]. Coastal Engineering, 2015, 103: 52−66. doi: 10.1016/j.coastaleng.2015.06.002 [41] Bergillos R J, Ortega-Sánchez M, Masselink G, et al. Morpho-sedimentary dynamics of a micro-tidal mixed sand and gravel beach, Playa Granada, southern Spain[J]. Marine Geology, 2016, 379: 28−38. doi: 10.1016/j.margeo.2016.05.003 [42] Almeida L P, Masselink G, McCall R, et al. Storm overwash of a gravel barrier: field measurements and XBeach-G modelling[J]. Coastal Engineering, 2017, 120: 22−35. doi: 10.1016/j.coastaleng.2016.11.009 [43] Elko N A, Wang Ping. Immediate profile and planform evolution of a beach nourishment project with hurricane influences[J]. Coastal Engineering, 2007, 54(1): 49−66. doi: 10.1016/j.coastaleng.2006.08.001 [44] Ojeda E, Guillén J, Ribas F. The morphodynamic responses of artificial embayed beaches to storm events[J]. Advances in Geosciences, 2010, 26: 99−103. doi: 10.5194/adgeo-26-99-2010 [45] Benedet L, Stive M J F, Finkl C W, et al. Morphological impacts of hurricanes Frances and Jeanne (2004) on nourished Florida beaches[C]//Fifth International International Conference on Coastal Dynamics. Barcelona, Spain: ASCE, 2006: 1–14. [46] Stockdon H F, Holman R A, Howd P A, et al. Empirical parameterization of setup, swash, and runup[J]. Coastal Engineering, 2006, 53(7): 573−588. doi: 10.1016/j.coastaleng.2005.12.005 [47] Masselink G, Russell P, Blenkinsopp C, et al. Swash zone sediment transport, step dynamics and morphological response on a gravel beach[J]. Marine Geology, 2010, 274(1/4): 50−68. [48] Austin M J, Buscombe D. Morphological change and sediment dynamics of the beach step on a macrotidal gravel beach[J]. Marine Geology, 2008, 249(3/4): 167−183. [49] Esteves L S, Brown J M, Williams J J, et al. Quantifying thresholds for significant dune erosion along the Sefton Coast, Northwest England[J]. Geomorphology, 2012, 143-144: 52−61. doi: 10.1016/j.geomorph.2011.02.029 [50] Masselink G, Short A D. The effect of tide range on beach morphodynamics and morphology: a conceptual beach model[J]. Journal of Coastal Research, 1993, 9(3): 785−800. [51] Bertoni D, Sarti G. On the profile evolution of three artificial pebble beaches at Marina di Pisa, Italy[J]. Geomorphology, 2011, 130(3/4): 244−254. [52] 杨顺良, 欧寿铭. 9914号台风对厦门岛东南部岸滩的环境效应[J]. 台湾海峡, 2001, 20(1): 115−122. doi: 10.3969/j.issn.1000-8160.2001.01.022Yang Shunliang, Ou Shouming. Environmental impact southeastern coast and beach of Xiamen Island during Typhoon No.9914[J]. Journal of Oceanography in Taiwan Strait, 2001, 20(1): 115−122. doi: 10.3969/j.issn.1000-8160.2001.01.022 [53] Poate T, Masselink G, Davidson M, et al. High frequency in-situ field measurements of morphological response on a fine gravel beach during energetic wave conditions[J]. Marine Geology, 2013, 342: 1−13. doi: 10.1016/j.margeo.2013.05.009 [54] Herbich J B. Handbook of Coastal Engineering[M]. New York: McGraw-Hill, 2000. [55] Benavente J, Gracia F J, López-Aguayo F. Empirical model of morphodynamic beachface behaviour for low-energy mesotidal environments[J]. Marine Geology, 2000, 167(3/4): 375−390. -