留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西沙群岛基底火山碎屑岩中单斜辉石的矿物化学特征及其地质意义

李诗颖 余克服 张瑜 陶士臣 严宏强

李诗颖,余克服,张瑜,等. 西沙群岛基底火山碎屑岩中单斜辉石的矿物化学特征及其地质意义[J]. 海洋学报,2019,41(7):65–76,doi:10.3969/j.issn.0253−4193.2019.07.006
引用本文: 李诗颖,余克服,张瑜,等. 西沙群岛基底火山碎屑岩中单斜辉石的矿物化学特征及其地质意义[J]. 海洋学报,2019,41(7):65–76,doi:10.3969/j.issn.0253−4193.2019.07.006
Li Shiying,Yu Kefu,Zhang Yu, et al. Mineral chemistry of clinopyroxene in pyroclastic rocks of the Xisha Islands and their geological significance[J]. Haiyang Xuebao,2019, 41(7):65–76,doi:10.3969/j.issn.0253−4193.2019.07.006
Citation: Li Shiying,Yu Kefu,Zhang Yu, et al. Mineral chemistry of clinopyroxene in pyroclastic rocks of the Xisha Islands and their geological significance[J]. Haiyang Xuebao,2019, 41(7):65–76,doi:10.3969/j.issn.0253−4193.2019.07.006

西沙群岛基底火山碎屑岩中单斜辉石的矿物化学特征及其地质意义

doi: 10.3969/j.issn.0253-4193.2019.07.006
基金项目: 国家自然科学基金重大研究计划重点支持项目“珊瑚礁千米深钻记录的西沙碳酸盐台地形成演化和环境变迁史”(91428203);国家自然科学基金面上项目“全球变化背景下西沙珊瑚礁区碳循环及其对海洋酸化的响应”(41776128)。
详细信息
    作者简介:

    李诗颖(1993—),女,广东省江门市人,从事珊瑚礁基底火成岩石学研究。E-mail:syli@scsio.ac.cn

    通讯作者:

    余克服(1969—),男,湖北省公安县人,教授,博士,主要从事南海珊瑚礁地质、生态与环境研究。E-mail:kefuyu@scsio.ac.cn

  • 中图分类号: P571

Mineral chemistry of clinopyroxene in pyroclastic rocks of the Xisha Islands and their geological significance

  • 摘要: 本文利用电子探针对南海西沙群岛琛航岛珊瑚礁底部火山碎屑岩中的单斜辉石矿物的化学特征进行了研究。结果表明,该单斜辉石属于富钙透辉石,部分有正环带结构,从核部到边部Ca、Fe、Ti的含量逐渐增加,是岩浆正常结晶顺序的反映,说明该区域的岩浆演化是向着富Ca、Fe、Ti方向发展的。主量元素数据显示,单斜辉石具有低Si高Al的特征(SiO2=41.40%~48.44%,Al2O3=5.54%~10.20%),且Al含量较高,说明母岩浆为不饱和碱性岩浆系列;此外,单斜辉石Ca含量偏高,Ca/(Ca+Mg+Fe)值在46.1%~51.4%之间,推测是母岩浆的高Ca含量导致了大量高钙辉石的产出。结合西沙海域的地震和构造资料,推测琛航岛珊瑚礁的基底是玄武质火山碎屑岩组成的平顶状海山,系岩浆穿过断裂发育的岩石圈层在西沙群岛的海底喷发,随后火山碎屑物质经过堆积、固结作用而形成;该火山碎屑岩的原岩为板内碱性玄武岩。
  • 图  1  南海地质简图(a)及西沙群岛珊瑚礁深钻分布(b)

    a 修改自文献[6];b 底图据文献[22]

    Fig.  1  Geological sketch map of the South China Sea (a) and the distribution of deep cores in the Xisha coral reef area (b)

    a is modified from reference [6]; b is modified from reference [22]

    图  2  基岩(玄武质火山碎屑岩)实体照片及单斜辉石(Px)在光学显微镜下照片

    a1为基岩实体照片;a2显示杏仁结构;b1和c1为单偏光镜下的辉石颗粒;b2和c2为正交偏光镜下的辉石颗粒

    Fig.  2  Photos of pyroclastic rock and its clinopyroxenes under optical microscope

    a1 is a rock’s picture; a2 showing amygdaloidal structure; b1 and c1 are pyroxene particles observed by a single polarizer; b2 and c2 are pyroxene particles observed by an orthogonal polarizer

    图  3  单斜辉石成分分类图解(底图据文献[28])

    Di.透辉石;He.钙铁辉石;Au.普通辉石;Pi.易变辉石;ClEn.斜顽辉 石;ClFs.斜铁辉石,本文样品(实心圆点)全部落入透辉石区域

    Fig.  3  Wo-En-Fs classification diagram showing the compositions of the clinopyroxene phenocrysts(developed from figure in reference [28])

    Di. Diopside; He. hedenbergite; Au. augite; Pi. pigeonite; ClEn. clinoenstatite; ClFs. clinoferrosilite. All data of our samples fall into the Di area

    图  4  单斜辉石环带结构背散电子图

    图a为样品CK0107-2环带结构辉石颗粒;图b为样品CK0107-4环带结构辉石颗粒

    Fig.  4  The backscattered electronic images of the clinopyroxenes’ ring-band structure

    a is the ring-band structure pyroxene particles of sample CK0107-2; b is the ring-band structure pyroxene particles of sample CK0107-4

    图  5  单斜辉石岩浆系列判别图(底图据文献[28])

    a为单斜辉石Al2O3-SiO2岩浆系列判别图,本文的样品(实心圆点)全部落入过碱性区域;b为(Ca+Na)-Ti 岩浆系列判别图,全部落入碱性玄武岩区域

    Fig.  5  Al2O3-SiO2 diagrams for clinopyroxenes (developed from figure in reference [28])

    a is Al2O3-SiO2 diagram, with all the data of our samples falling into the over-alkaline region; b is (Ca+Na)-Ti diagram, with all the data of our samples falling into the alkaline basalt area

    图  6  西沙群岛琛航岛火山碎屑岩中的单斜辉石在TiO2-MnO-Na2O三角判别图(a)及F1-F2双因子判别图(b)

    底图据文献[13],实心圆点系本文样品,全部落入板块内部碱性玄武岩区域。WPT.板块内部拉斑玄武岩;WPA.板块内部碱性玄武岩; VAB. 火山弧玄武岩;OFB.洋底玄武岩。

    Fig.  6  Triangular diagram of TiO2-MnO-Na2O (a) and F1 versus F2 diagram of clinoproxene (b)

    Developed from figure in reference [13], with all the data of our samples falling into the alkaline basalt area inside the plate. WPT. within-plate tholeiitic basalt; WPA. within-plate alkali basalt; VAB. volcanic arc basalt; and OFB. ocean floor basalt F1=–0.012(SiO2) –0.0807(TiO2)+0.0026(Al2O3) –0.0012(∑FeO) –0.0026(MnO)+0.0087(MgO) –0.0128(CaO)–0.0419(Na2O); F2=–0.0469(SiO2)–0.0818(TiO2) –0.0212(Al2O3) –0.0041(∑FeO) –0.1435(MnO)–0.0029(MgO)+0.0085(CaO)+0.016(Na2O)

    表  1  单斜辉石成分电子探针分析结果(wt%)

    Tab.  1  EPMA analytical results of clinopyroxne(wt%)

    样品号 CK0101-1 CK0101-2 CK0101-3 CK0101-4 CK0101-5 CK0104-1 CK0104-2 CK0104-3 CK0105-1 CK0105-3 CK0105-4 CK0105-5 CK0105-6
    SiO2 47.22 44.10 48.01 43.02 46.57 43.43 43.25 46.52 45.13 42.44 44.27 46.59 42.59
    TiO2 2.62 4.02 2.56 4.12 2.63 4.03 4.50 2.72 3.48 4.57 3.67 2.65 4.65
    Al2O3 5.91 8.49 5.81 9.32 5.60 9.20 9.75 6.04 7.77 9.78 7.84 5.58 10.03
    Cr2O3 0.11 0.08 0.09 0.27 0.16 0.10 0.03 0.13 0.23 0.12 0.16 0.01 0.22
    FeO 6.79 7.54 6.42 6.93 6.97 7.23 7.43 6.88 6.61 7.44 6.97 7.02 8.11
    MnO 0.08 0.06 0.08 0.07 0.07 0.08 0.08 0.10 0.04 0.04 0.08 0.10 0.04
    MgO 13.28 11.80 13.69 11.30 13.41 11.59 11.20 13.24 12.60 11.17 12.10 13.05 12.69
    CaO 22.24 22.27 22.22 22.29 21.81 22.24 22.09 22.02 22.21 22.19 22.17 22.04 20.54
    Na2O 0.43 0.47 0.49 0.57 0.42 0.52 0.58 0.44 0.47 0.51 0.48 0.42 0.50
    K2O 0.01 0.00 0.02 0.02 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.07
    阳离子数(以6个氧离子为基准)
    Si 1.78 1.68 1.80 1.65 1.78 1.66 1.65 1.77 1.71 1.63 1.70 1.79 1.61
    Al(Ⅳ) 0.22 0.32 0.20 0.35 0.22 0.34 0.35 0.23 0.29 0.37 0.30 0.21 0.39
    Al(Ⅵ) 0.05 0.06 0.05 0.07 0.03 0.07 0.08 0.04 0.06 0.07 0.05 0.04 0.06
    Ti 0.07 0.11 0.07 0.12 0.08 0.12 0.13 0.08 0.10 0.13 0.11 0.08 0.13
    Cr 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01
    Fe3+ 0.07 0.10 0.06 0.10 0.09 0.11 0.08 0.09 0.08 0.11 0.10 0.08 0.14
    Fe2+ 0.14 0.14 0.14 0.12 0.13 0.12 0.15 0.13 0.12 0.13 0.13 0.14 0.11
    Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    Mg 0.75 0.67 0.76 0.65 0.76 0.66 0.63 0.75 0.71 0.64 0.69 0.75 0.72
    Ca 0.90 0.91 0.89 0.92 0.89 0.91 0.90 0.90 0.90 0.91 0.91 0.91 0.83
    Na 0.03 0.03 0.04 0.04 0.03 0.04 0.04 0.03 0.03 0.04 0.04 0.03 0.04
    K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    各端元组分及计算结果
    Wo 47.50 49.02 47.08 50.13 46.73 49.45 49.61 47.22 48.56 49.91 48.91 47.42 45.24
    En 39.45 36.14 40.36 35.37 39.97 35.87 34.99 39.49 38.32 34.97 37.14 39.07 38.91
    Fs 11.39 12.95 10.70 12.18 11.69 12.58 13.06 11.60 11.27 13.03 12.04 11.87 13.85
    Mg# 77.81 73.77 79.26 74.58 77.54 74.26 73.03 77.54 77.37 72.97 75.73 76.95 73.84
    t1/℃ 1 178.58 1 207.82 1 177.29 1 217.56 1 175.12 1 215.93 1 221.89 1 180.07 1 199.61 1 222.48 1 200.64 1 175.08 1 223.91
    t2/℃ 1 294.40 1 400.67 1 288.00 1 437.84 1 284.95 1 430.75 1 451.40 1 301.42 1 370.53 1 456.01 1 377.13 1 284.67 1 460.95
    p/102MPa 14.78 24.37 14.20 27.72 13.93 27.08 28.95 15.41 21.65 29.36 22.25 13.90 29.81
    SiO2 43.86 43.64 42.39 47.38 47.95 46.12 47.28 43.22 45.67 45.38 45.27 43.99 45.65
    TiO2 4.14 3.58 4.74 2.39 2.47 3.15 2.76 4.41 3.26 3.35 3.54 3.98 3.35
    Al2O3 9.19 8.87 10.20 5.54 5.62 7.42 5.59 9.54 7.38 7.90 7.84 9.00 7.69
    Cr2O3 0.22 0.07 0.07 0.10 0.13 0.12 0.11 0.33 0.17 0.27 0.15 0.39 0.29
    下载: 导出CSV

    表  2  单斜辉石环带电子探针成分分析结果(wt%)

    Tab.  2  EPMA analytical results of Compositional zone of clinopyroxene(wt%)

    样品号 CK0101-1 CK0105-4 CK0106-8 CK0107-2 CK0107-4 CK0107-5 CK0108-4
    SiO2 45.95 47.97 47.76 47.81 41.58 43.41 47.95 44.67 47.85 44.38 44.34 43.90 41.42 48.38 42.95 44.16 46.25 41.55
    TiO2 3.11 2.26 2.51 2.45 4.96 3.61 2.47 3.26 2.54 3.76 3.84 4.17 5.23 2.19 4.33 3.75 3.06 5.13
    Al2O3 6.79 5.33 5.61 5.29 9.86 8.37 5.62 8.80 5.94 8.91 8.75 8.96 10.91 5.28 9.48 9.01 7.20 10.78
    Cr2O3 0.00 0.14 0.20 0.10 0.08 0.29 0.13 0.03 0.02 0.22 0.50 0.28 0.19 0.15 0.18 0.51 0.40 0.25
    FeO 7.49 6.31 6.56 6.11 7.84 6.95 6.62 7.76 6.66 7.23 7.02 6.86 7.46 6.47 7.24 7.00 6.37 7.43
    MnO 0.06 0.09 0.09 0.07 0.09 0.07 0.12 0.04 0.08 0.07 0.09 0.04 0.08 0.07 0.02 0.09 0.06 0.11
    MgO 12.42 13.73 13.69 13.84 10.73 11.72 13.60 11.91 13.41 12.05 12.00 11.90 10.62 13.77 11.47 11.70 13.11 10.75
    CaO 22.16 22.27 22.30 22.07 22.20 22.24 21.88 21.92 21.95 22.42 22.33 22.44 22.00 22.18 22.28 22.62 22.44 22.30
    Na2O 0.44 0.38 0.47 0.47 0.50 0.46 0.42 0.54 0.46 0.49 0.50 0.52 0.55 0.42 0.48 0.50 0.44 0.54
    K2O 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00
    阳离子数(以6个氧离子为基准)
    Si 1.75 1.81 1.79 1.81 1.61 1.68 1.80 1.69 1.80 1.67 1.68 1.66 1.59 1.82 1.64 1.67 1.74 1.59
    Al(Ⅳ) 0.25 0.19 0.21 0.19 0.39 0.32 0.20 0.31 0.20 0.33 0.32 0.34 0.41 0.18 0.36 0.33 0.26 0.41
    Al(Ⅵ) 0.05 0.05 0.04 0.04 0.06 0.06 0.05 0.09 0.06 0.07 0.07 0.06 0.08 0.05 0.07 0.07 0.06 0.07
    Ti 0.09 0.06 0.07 0.07 0.14 0.11 0.07 0.09 0.07 0.11 0.11 0.12 0.15 0.06 0.12 0.11 0.09 0.15
    Cr 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.02 0.01 0.01
    Fe3+ 0.08 0.06 0.08 0.06 0.12 0.11 0.05 0.10 0.04 0.10 0.09 0.09 0.09 0.05 0.10 0.10 0.08 0.11
    Fe2+ 0.16 0.14 0.13 0.13 0.13 0.11 0.16 0.14 0.16 0.12 0.13 0.12 0.14 0.15 0.13 0.12 0.12 0.13
    Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    Mg 0.70 0.77 0.77 0.78 0.62 0.68 0.76 0.67 0.75 0.68 0.68 0.67 0.61 0.77 0.65 0.66 0.73 0.61
    Ca 0.90 0.90 0.90 0.89 0.92 0.92 0.88 0.89 0.88 0.91 0.90 0.91 0.90 0.89 0.91 0.92 0.90 0.91
    Na 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.04 0.03 0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.03 0.04
    K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    各端元组分及计算结果
    Wo 48.08 47.35 47.08 46.98 50.26 49.62 46.75 48.17 47.01 49.03 49.13 49.56 50.46 47.01 49.82 49.94 48.30 50.62
    En 37.49 40.60 40.22 40.99 33.81 36.39 40.43 36.41 39.96 36.66 36.74 36.56 33.89 40.60 35.69 35.95 39.26 33.94
    Fs 12.71 10.58 10.90 10.21 13.88 12.13 11.21 13.25 11.23 12.36 12.12 11.80 13.39 10.77 12.56 12.12 10.74 13.25
    Ac 1.72 1.47 1.80 1.83 2.05 1.87 1.61 2.16 1.80 1.95 2.00 2.09 2.27 1.61 1.93 1.99 1.71 2.20
    下载: 导出CSV
  • [1] 姚伯初, 曾维军, 陈艺中, 等. 南海西沙海槽, 一条古缝合线[J]. 海洋地质与第四纪地质, 1994, 14(1): 1−10.

    Yao Bochu, Zeng Weijun, Chen Yizhong, et al. Xisha trough of South China Sea—an ancient suture[J]. Marine Geology and Quaternary Geology, 1994, 14(1): 1−10.
    [2] Lei Chao, Ren Jianye. Hyper-extended rift systems in the Xisha Trough, northwestern South China Sea: Implications for extreme crustal thinning ahead of a propagating ocean[J]. Marine and Petroleum Geology, 2016, 77: 846−864. doi: 10.1016/j.marpetgeo.2016.07.022
    [3] 黄海波, 丘学林, 徐辉龙, 等. 南海西沙地块岛屿地震观测和海陆联测初步结果[J]. 地球物理学报, 2011, 54(12): 3161−3170. doi: 10.3969/j.issn.0001-5733.2011.12.016

    Huang Haibo, Qiu Xuelin, Xu Huilong, et al. Preliminary results of the earthquake observation and the onshore-offshore seismic experiments on Xisha Block[J]. Chinese Journal of Geophysics, 2011, 54(12): 3161−3170. doi: 10.3969/j.issn.0001-5733.2011.12.016
    [4] 冯英辞, 詹文欢, 孙杰, 等. 西沙海域上新世以来火山特征及其形成机制[J]. 热带海洋学报, 2017, 36(3): 73−79.

    Feng Yingci, Zhan Wenhuan, Sun Jie, et al. The formation mechanism and characteristics of volcanoes in the Xisha waters since Pliocene[J]. Journal of Tropical Oceanography, 2017, 36(3): 73−79.
    [5] Yan Quanshu, Shi Xuefa, Wang Kunshan, et al. Major element, trace element, and Sr, Nd and Pb isotope studies of Cenozoic basalts from the South China Sea[J]. Science in China Series D: Earth Sciences, 2008, 51(4): 550−566. doi: 10.1007/s11430-008-0026-3
    [6] 石学法, 鄢全树. 南海新生代岩浆活动的地球化学特征及其构造意义[J]. 海洋地质与第四纪地质, 2011, 31(2): 59−72.

    Shi Xuefa, Yan Quanshu. Geochemistry of Cenozoic magmatism in the South China Sea and its tectonic implications[J]. Marine Geology & Quaternary Geology, 2011, 31(2): 59−72.
    [7] 张峤, 吴时国, 吕福亮, 等. 南海西北陆坡火成岩体地震识别及分布规律[J]. 大地构造与成矿学, 2014, 38(4): 919−938. doi: 10.3969/j.issn.1001-1552.2014.04.017

    Zhang Qiao, Wu Shiguo, Lv Fuliang, et al. The seismic characteristics and the distribution of the igneous rocks in the northernwest slope of the South China Sea[J]. Geotectonica et Metallogenia, 2014, 38(4): 919−938. doi: 10.3969/j.issn.1001-1552.2014.04.017
    [8] Armienti P, Innocenti F, D ' Orazio M. Mount Etna pyroxene as tracer of petrogenetic processes and dynamics of the feeding system[J]. Geological Society of America, 2007, 418(6): 265−276.
    [9] Armienti P, Perinelli C, Putirka K D. A new model to estimate deep-level magma ascent rates, with applications to Mt. Etna (Sicily, Italy)[J]. Journal of Petrology, 2013, 54(4): 795−813. doi: 10.1093/petrology/egs085
    [10] Ubide T, Kamber B S. Volcanic crystals as time capsules of eruption history[J]. Nature Communications, 2018, 9(1): 326. doi: 10.1038/s41467-017-02274-w
    [11] Streck M J. Mineral textures and zoning as evidence for open system processes[J]. Reviews in Mineralogy and Geochemistry, 2008, 69(1): 595−622. doi: 10.2138/rmg.2008.69.15
    [12] Nisbet E G, Pearce J A. Clinopyroxene composition in mafic lavas from different tectonic settings[J]. Contributions to Mineralogy and Petrology, 1977, 63(2): 149−160. doi: 10.1007/BF00398776
    [13] 邱家骧, 曾广策. 中国东部新生代玄武岩中低压单斜辉石的矿物化学及岩石学意义[J]. 岩石学报, 1987(4): 1−9. doi: 10.3321/j.issn:1000-0569.1987.04.001

    Qiu Jiaxiang, Zeng Guangce. The main characteristics and petrological significance of low pressure clinopyroxenes in the Cenozoic basalts from eastern China[J]. Acta Petrologica Sinica, 1987(4): 1−9. doi: 10.3321/j.issn:1000-0569.1987.04.001
    [14] 赵文霞, 于丽芳, 陈建林, 等. 青藏米巴勒地区中新世钠质方沸石(霞石)响岩中单斜辉石环带研究:对岩浆-构造演化的启示[J]. 岩石学报, 2011, 27(7): 2073−2082.

    Zhao Wenxia, Yu Lifang, Chen Jianlin, et al. The zoning structure of clinopyroxene phenocrysts in the Miocene sodium analcime (nepheline) phonolite in Mibale area, Tibet: implications for the magmatic and tectonic evolution[J]. Acta Petrologica Sinica, 2011, 27(7): 2073−2082.
    [15] 赖绍聪, 秦江锋, 李永飞. 青藏北羌塘新第三纪玄武岩单斜辉石地球化学[J]. 西北大学学报:自然科学版, 2005, 35(5): 121−126.

    Lai Shaocong, Qin Jiangfeng, Li Yongfei. Trace element geochemistry and classification of the clinopyroxene in Cenozoic trachybasalt from north Qiangtang area, Tibetan Plateau[J]. Journal of Northwest University: Natural Science Edition, 2005, 35(5): 121−126.
    [16] 周新民, 陈图华, 刘昌实, 等. 我国东南沿海碱性玄武质岩石中辉石和角闪石巨晶[J]. 矿物学报, 1982(1): 15−22.

    Zhou Xinmin, Chen Tuhua, Liu Changshi, et al. Pyroxene and amphibole megacrysts in alkali basaltic rocks from southeastern coastal provinces of China[J]. Acta Mineralogica Sinica, 1982(1): 15−22.
    [17] 白志民. 北京西山中生代火山岩中单斜辉石矿物化学及成因意义[J]. 岩石矿物学杂志, 2000, 19(2): 174−184. doi: 10.3969/j.issn.1000-6524.2000.02.010

    Bai Zhimin. Mineral chemistry and genesic significance of cliniopyroxenes from the mesozoic volcanic rocks in western hills of Beijing[J]. Acta Petrologica et Mineralogica, 2000, 19(2): 174−184. doi: 10.3969/j.issn.1000-6524.2000.02.010
    [18] Hu Junhao, Song Xieyan, He Hailong, et al. Constraints of texture and composition of clinopyroxene phenocrysts of Holocene volcanic rocks on a magmatic plumbing system beneath Tengchong, SW China[J]. Journal of Asian Earth Sciences, 2018, 154: 342−353. doi: 10.1016/j.jseaes.2017.12.029
    [19] 鄢全树, 石学法, 王昆山, 等. 南海新生代玄武岩中单斜辉石矿物化学及成因意义[J]. 岩石学报, 2007, 23(11): 2981−2989. doi: 10.3969/j.issn.1000-0569.2007.11.028

    Yan Quanshu, Shi Xuefa, Wang Kunshan, et al. Mineral chemistry and its genetic significance of olivine in Cenozoic basalts from the South China Sea[J]. Acta Petrologica Sinica, 2007, 23(11): 2981−2989. doi: 10.3969/j.issn.1000-0569.2007.11.028
    [20] 闫纪元, 李旭平, 鄢全树. 南海新生代玄武岩中单斜辉石地球化学特征及其地质意义[J]. 地质论评, 2014, 60(4): 824−838.

    Yan Jiyuan, Li Xuping, Yan Quanshu. Geochemical characteristics and geological implications of clinopyroxenes in cenozoic basalts from the South China Sea[J]. Geological Review, 2014, 60(4): 824−838.
    [21] 朱伟林, 王振峰, 米立军, 等. 南海西沙西科1井层序地层格架与礁生长单元特征[J]. 地球科学: 中国地质大学学报, 2015, 40(4): 677−687.

    Zhu Weilin, Wang Zhenfeng, Mi Lijun, et al. Sequence stratigraphic framework and reef growth unit of well Xike-1 from Xisha Islands, South China Sea[J]. Earth Sciences: Journal of China University of Geosciences, 2015, 40(4): 677−687.
    [22] 邸香平. 中国地图册[M]. 北京: 中国地图出版社, 2009.

    Di Xiangping. Atlas of China[M]. Beijing: China Map Press, 2009.
    [23] 孙嘉诗. 西沙基底形成时代的商榷[J]. 海洋地质与第四纪地质, 1994, 7(4): 5−6.

    Sun Jiashi. A discussion on the formation ages of the bedrock in the Xisha islands[J]. Marine Geology and Quaternary Geology, 1994, 7(4): 5−6.
    [24] 朱伟林, 解习农, 王振峰, 等. 南海西沙隆起基底成因新认识[J]. 中国科学: 地球科学, 2017, 60(12): 2214−2222.

    Zhu Weilin, Xie Xinong, Wang Zhenfeng, et al. New insights on the origin of the basement of the Xisha Uplift, South China Sea[J]. Science China: Earth Sciences, 2017, 60(12): 2214−2222.
    [25] Zhang Yu, Yu Kefu, Qian Handong, et al. The basement and volcanic activities of the Xisha Islands: evidence from the kilometre-scale drilling in the northwestern South China Sea[J]. Geological Journal, 2019, doi: 10.1002/gj.3416.
    [26] 邹和平. 试谈南海海盆地壳属性问题——由南海海盆及其邻区玄武岩的比较研究进行讨论[J]. 大地构造与成矿学, 1993, 17(4): 293−303.

    Zou Heping. On the problem about the crust’s, attribution of South China Sea Basin-discussion from comparative study on basalts of seamounts in South China Sea Basin and the neighboring areas[J]. Geotectonics and Metallogenesis, 1993, 17(4): 293−303.
    [27] 刘宝珺. 沉积岩石学[M]. 北京: 地质出版社, 1979: 55–140.

    Liu Baojun. Sedimentary Petrology[M]. Beijing: Geological Publishing House, 1979: 55–140.
    [28] Fabries J, Ferguson A K, Ginzburg I V, et al. Nomenclature of pyroxenes[J]. Mineralogical Magazine, 1988, 52: 535−550. doi: 10.1180/minmag.1988.052.367.15
    [29] 于丽芳, 赵文霞, 陈建林, 等. 拉萨地块中南部新生代超钾质岩中单斜辉石斑晶的环带成分研究[J]. 岩石学报, 2011, 27(12): 3666−3674.

    Yu Lifang, Zhao Wenxia, Chen Jianlin, et al. Compositional zone investigation of clinopyroxene phenocryst in the Cenozoic ultra-potassic rocks from the middle-southern Lhasa block[J]. Acta Petrologica Sinica, 2011, 27(12): 3666−3674.
    [30] Capedri S, Venturelli G. Clinopyroxene composition of ophiolitic metabasalts in the Mediterranean area[J]. Earth and Planetary Science Letters, 1979, 43(1): 61−73. doi: 10.1016/0012-821X(79)90155-9
    [31] Ovung T N, Ray J, Ghosh B, et al. Clinopyroxene composition of volcanics from the Manipur Ophiolite, Northeastern India: implications to geodynamic setting[J]. International Journal of Earth Sciences, 2017, 107(4): 1215−1229.
    [32] 邱家骧, 廖群安. 浙闽新生代玄武岩的岩石成因学与Cpx矿物化学[J]. 火山地质与矿产, 1996, 17(1/2): 16−25.

    Qiu Jiaxiang, Liao Qun’an. Petrogenesis and Cpx mineral chemistry of Cenozoic basalts from Zhejiang and Fujian of eastern China[J]. Volcanology & Mineral Resources, 1996, 17(1/2): 16−25.
    [33] Kushiro I. Si-AI relation in clinopyroxenes from igneous rocks[J]. American Journal of Science, 1960, 258(8): 548−554. doi: 10.2475/ajs.258.8.548
    [34] Song Xiaoxiao, Li Chunfeng, Yao Yongjian, et al. Magmatism in the evolution of the South China Sea: Geophysical characterization[J]. Marine Geology, 2017, 394: 4−15. doi: 10.1016/j.margeo.2017.07.021
    [35] 牛晓露, 陈斌, 马旭. 河北矾山杂岩体中单斜辉石的研究[J]. 岩石学报, 2009, 25(2): 359−373.

    Niu Xiaolu, Chen Bin, Ma Xu. Clinopyroxenes from the Fanshan pluton, Hebei[J]. Acta Petrologica Sinica, 2009, 25(2): 359−373.
    [36] 韦栋梁, 夏斌, 张玉泉, 等. 滇西卓潘-六合碱性岩的辉石成分及其岩石化学特征[J]. 矿物岩石, 2005, 25(2): 15−19. doi: 10.3969/j.issn.1001-6872.2005.02.004

    Wei Dongliang, Xia Bin, Zhang Yuquan, et al. The pyroxenes composition and petrochmical characteristics of Zhuopan-Liuhe alkali rock bodies in Western Yunnan Province, China[J]. Journal of Mineralogy and Petrology, 2005, 25(2): 15−19. doi: 10.3969/j.issn.1001-6872.2005.02.004
    [37] 张峤. 南海北部陆缘新生代岩浆活动及构造意义[D]. 北京: 中国科学院海洋研究院, 2014: 55–180.

    Zhang Qiao. Cenozoic magmatism in the northern continental margin of the South China Sea and its implication for the tectonic evolution of the rifted margin[D]. Beijing: Institute of Oceanology, Chinese Academy of Sciences, 2014: 55–180.
    [38] Planke S, Symonds P A, Alvestad E, et al. Seismic volcanostratigraphy of large-volume basaltic extrusive complexes on rifted margins[J]. Journal of Geophysical Research: Atmospheres, 2000, 105(B8): 19335−19351. doi: 10.1029/1999JB900005
    [39] 鄢全树, 石学法. 南海盆海山火山碎屑岩的发现及其地质意义[J]. 岩石学报, 2009, 25(12): 227−234.

    Yan Quanshu, Shi Xuefa. Characteristics of volcaniclastic rocks from seamounts in the South China Sea and its geological implications[J]. Acta Petrologica Sinica, 2009, 25(12): 227−234.
    [40] 黄海波, 丘学林, 胥颐, 等. 利用远震接收函数方法研究南海西沙群岛下方地壳结构[J]. 地球物理学报, 2011, 54(11): 2788−2798. doi: 10.3969/j.issn.0001-5733.2011.11.009

    Huang Haibo, Qiu Xuelin, Xu Yi, et al. Crustal structure beneath the Xisha Islands of the South China Sea simulated by the teleseismic receiver function method[J]. Chinese Journal of Geophysics, 2011, 54(11): 2788−2798. doi: 10.3969/j.issn.0001-5733.2011.11.009
    [41] Zhao Dapeng. Seismic images under 60 hotspots: Search for mantle plumes[J]. Gondwana Research, 2007, 12(4): 335−355. doi: 10.1016/j.gr.2007.03.001
    [42] Wang Xuance, Li Zhengxiang, Li Xianhua, et al. Identification of an ancient mantle reservoir and young recycled materials in the source region of a young mantle plume: Implications for potential linkages between plume and plate tectonics[J]. Earth and Planetary Science Letters, 2013, 377-378: 248−259. doi: 10.1016/j.jpgl.2013.07.003
    [43] Yan Quanshu, Shi Xuefa, Metcalfe I, et al. Hainan mantle plume produced late Cenozoic basaltic rocks in Thailand, Southeast Asia[J]. Scientific Reports, 2018, 8: 2640. doi: 10.1038/s41598-018-20712-7
    [44] Liu Hao, Chen Fei, Leng Wei, et al. Crustal footprint of the Hainan plume beneath Southeast China[J]. Journal of Geophysical Research: Solid Earth, 2017, 123(4): 3065−3079.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  685
  • HTML全文浏览量:  82
  • PDF下载量:  347
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-08
  • 修回日期:  2019-01-01
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-07-25

目录

    /

    返回文章
    返回