留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北半球夏季中高纬海洋声散射层分布研究

黄二辉 杨燕明 文洪涛 周鸿涛

黄二辉,杨燕明,文洪涛,等. 北半球夏季中高纬海洋声散射层分布研究[J]. 海洋学报,2019,41(7):52–64,doi:10.3969/j.issn.0253−4193.2019.07.005
引用本文: 黄二辉,杨燕明,文洪涛,等. 北半球夏季中高纬海洋声散射层分布研究[J]. 海洋学报,2019,41(7):52–64,doi:10.3969/j.issn.0253−4193. 2019.07.005
Huang Erhui,Yang Yanming,Wen Hongtao, et al. Research on the distribution of sound scattering layer in the middle and high latitudes ocean of the Northern Hemisphere in autumn[J]. Haiyang Xuebao,2019, 41(7):52–64,doi:10.3969/j.issn.0253−4193.2019.07.005
Citation: Huang Erhui,Yang Yanming,Wen Hongtao, et al. Research on the distribution of sound scattering layer in the middle and high latitudes ocean of the Northern Hemisphere in autumn[J]. Haiyang Xuebao,2019, 41(7):52–64,doi:10.3969/j.issn.0253−4193. 2019.07.005

北半球夏季中高纬海洋声散射层分布研究

doi: 10.3969/j.issn.0253-4193.2019.07.005
基金项目: 国家海洋局第三海洋研究所基本科研业务费专项资金项目(海三科2017022);国家重点研发计划(2018YFC1405900)。
详细信息
    作者简介:

    黄二辉(1978—),男,河南省周口市人,副研究员,主要从事海洋声学与遥感方面研究。E-mail:huangerhui@tio.org.cn

  • 中图分类号: P714

Research on the distribution of sound scattering layer in the middle and high latitudes ocean of the Northern Hemisphere in autumn

  • 摘要: 利用第八次北极调查走航ADCP后向散射强度数据,结合太阳高度、海冰密集度和实测水体环境参数数据,统计分析了中高纬海洋声散射层的时空变化特征。结果表明,纬度越高,声散射层在海表滞留时间越短,即使在极昼期间及全海冰覆盖海域,虽然其迁移幅度和后向散射强度减弱,但仍受太阳高度变化影响,且二者具有较强的时序相关性;在北极中央海域,不仅声散射层迁移活动较弱,且出现无明显散射层的情况,可能是因为该海域浮游动物和鱼类聚集度相对较低且迁移活动微弱,超出了本文所用ADCP的探测精度范围;从鄂霍次克海至白令海西南海域,往返ADCP数据均显示有两个后向散射强度上高下低,但垂直迁移时间同步的声散射层,且二者间距随纬度增加而逐渐减小并合为一体,这可能是由不同生活习性的海洋生物造成的。
  • 图  1  第八次北极科学考察走航ADCP航迹和CTD站位分布

    蓝色线段为ADCP走航航迹,绿色圆点为CTD站位点,红色线段为 本文所用SG、CA、CB CTD断面

    Fig.  1  The track of ship-board ADCP and the position of CTD stations in the eighth Arctic science expedition

    Blue lines for ADCP track, green dots for CTD stations, red lines for SG, CA and CB sections of CTD in this paper

    图  2  全航程太阳高度角和每天白昼、黑夜时长随时间变化曲线

    Fig.  2  The solar altitude angle and daytime and nighttime of day for the entire voyage

    图  3  全航程ADCP水体后向散射强度的时间–深度分布

    Fig.  3  Time vs depth figure of seawater backscatter intensity by ADCP for the entire voyage

    图  4  调查船去程(a)和返程(b)经过日本海时ADCP后向散射强度的时间–深度分布

    Fig.  4  Time vs depth figure of seawater backscattering intensity by ADCP during the forth (a) and back (b) through the Japan Sea

    图  5  鄂霍次克海–白令海航段往程(a)和返程(b)ADCP后向散射强度的时间–深度分布

    Fig.  5  Time vs depth figure of seawater backscattering intensity by ADCP during the forth (a) and back (b) through the Okhotsk Sea and Bering Sea segment

    图  6  北冰洋航段海冰密度时序曲线

    Fig.  6  Time vs sea ice concentrate at the position of the ship in the Arctic Ocean segment

    图  7  调查船沿着加拿大海盆边缘进入门捷列夫海岭时ADCP后向散射强度的时间–深度分布

    Fig.  7  Time vs depth figure of seawater backscattering intensity by ADCP through the Mendeleev Ridge along the Canadian Basin edge

    图  8  北极中央航段ADCP后向散射强度的时间–深度分布

    Fig.  8  Time vs depth figure of seawater backscattering intensity by ADCP during the central Arctic Ocean segment

    图  9  断面CA处温度、盐度、氮饱和度、氧饱和度随时间变化

    Fig.  9  The distribution of temperature, salinity, nitrogen saturation and oxygen saturation with time at the Section CA

    图  10  格陵兰岛周边海域ADCP后向散射强度的时间–深度分布

    Fig.  10  Time vs depth figure of seawater backscattering intensity by ADCP through the surrounding of the Greenland

    图  11  断面SG处温度、盐度、氮饱和度、氧饱和度随时间变化

    Fig.  11  The distribution of temperature, salinity, nitrogen saturation and oxygen saturation with time at the Section SG

    图  12  加拿大海盆区ADCP后向散射强度的时间–深度分布

    Fig.  12  Time vs depth figure of seawater backscattering intensity by ADCP in the Canadian Basin

    图  13  断面CB处温度、盐度、氮饱和度、氧饱和度随时间分布

    Fig.  13  Distribution of temperature, salinity, nitrogen saturation and oxygen saturation with time at the Section CB

    表  1  全航程声散射层参数统计

    Tab.  1  Statistics of the parameters of sound scattering layer for the entire voyage

    日期向下迁移早于日出时差/min向上迁移晚于日落时差/min平均深度/m平均厚度/m平均强度/dB备注
    7月22日6065380100−92
    7月23日8070385100−90
    7月24日215110−81第一散射层
    495170−83第二散射层
    7月25日220120−80第一散射层
    480130−82第二散射层
    7月26日5060250120−72第一散射层
    第二散射层
    7月27日8173220100−68第一散射层
    48080−88第二散射层
    7月28日85102285130−68第一散射层
    390120−80第二散射层
    7月29日10211630590−75第一散射层
    第二散射层
    8月2日极昼,海冰覆盖,散射层迁移未明显到达表层425200−81
    8月3日380150−87
    8月4日360150−87
    8月5日350110−93
    8月6日350100−94
    8月7日330110−94
    8月8日265210−94
    8月9日325130−93
    8月10日380120−95
    8月11日360100−97
    8月12日37090−101
    8月13日40590−101
    下载: 导出CSV
  • [1] 孙松. 中国区域海洋学: 生物海洋学[M]. 北京: 海洋出版社, 2012.

    Sun Song. Regional Oceanography of China Seas: Biological Oceanography[M]. Beijing: China Ocean Press, 2012.
    [2] 孙栋, 王春生. 深远海浮游动物生态学研究进展[J]. 生态学报, 2017, 37(10): 3219−3231.

    Sun Dong, Wang Chunsheng. A review of open ocean zooplankton ecology[J]. Acta Ecologica Sinica, 2017, 37(10): 3219−3231.
    [3] 李少菁, 许振祖, 黄加祺, 等. 海洋浮游动物学研究[J]. 厦门大学学报: 自然科学版, 2001, 40(2): 574−585.

    Li Shaojing, Xu Zhengzu, Huang Jiaqi, et al. Studies on biology of marine zooplankton in China[J]. Journal of Xiamen University: Natural Science, 2001, 40(2): 574−585.
    [4] 汪德昭, 尚尔昌. 水声学[M]. 2版. 北京: 科学出版社, 2013.

    Wang Dezhao, Shang Erchang. Underwanter Acoustics[M]. 2nd ed. Beijing: Science Press, 2013.
    [5] 李玉昕, 杨颐华, 李志宽, 等. 南海深水散射层的实验研究[J]. 海洋学报, 1986, 8(1): 107−110.

    Li Yuxin, Yang Yihua, Li Zhikuan, et al. Experimental study of deep scattering layer in South China Sea[J]. Haiyang Xuebao, 1986, 8(1): 107−110.
    [6] 温明明, 牟泽霖, 万芃, 等. 南海深海体积混响及散射特性试验研究[J]. 声学技术, 2016, 35(6): 512−517.

    Wen Mingming, Mou Zelin, Wan Peng, et al. Experimental study of deep-sea volume veverberation and scattering characteristics in the South China Sea[J]. Technical Acoustics, 2016, 35(6): 512−517.
    [7] Walther G R, Post E, Convey P, et al. Ecological responses to recent climate change[J]. Nature, 2002, 416(6879): 389−395. doi: 10.1038/416389a
    [8] Costello M J, Breyer S. Ocean depths: the mesopelagic and implications for global warming[J]. Current Biology, 2017, 27(1): R36−R38. doi: 10.1016/j.cub.2016.11.042
    [9] 刘洪宁. 北冰洋太平洋扇区声学体积后向散射强度和海洋环境噪声研究[D]. 青岛: 国家海洋局第一海洋研究所, 2015.

    Liu Hongning. Study of acoustic volume backscattering strength and marine environment noise in Pacific sector of the Arctic Ocean[D]. Qingdao: First Institute of Oceanography, State Oceanic Administration, 2015.
    [10] Deines K L. Backscatter estimation using broadband acoustic Doppler current profilers[C]//Proceedings of the IEEE Sixth Working Conference on Current Measurement. San Diego, CA, USA: IEEE, 1999: 249−253.
    [11] 龚丽辉, 冯雷, 王长红, 等. 利用声相关流速剖面仪观测深水散射层[J]. 声学技术, 2008, 27(6): 807−811.

    Gong Lihui, Feng Lei, Wang Changhong, et al. Deep scattering layer observation using acoustic correlation current profiler[J]. Technical Acoustics, 2008, 27(6): 807−811.
    [12] 张超. 基于多波束测深仪和走航式ADCP的西太平洋声学散射层研究[D]. 青岛: 国家海洋局第一海洋研究所, 2017.

    Zhang Chao. Research on sound scattering layer in the western Pacific observed with Multibeam sounding system and ship-board ADCP[D]. Qingdao: First Institute of Oceanography, State Oceanic Administration, 2017.
    [13] 陈次颖, 章淑珍. 应用水声方法考察底栖鱼类和DSL(深海散射层)的垂直移动[J]. 海洋科学, 1994, 18(3): 53−56.

    Chen Ciying, Zhang Shuzhen. A practical investigation on Demersal fish and DSL rhythmic vertical migration by acoustic method[J]. Marine Sciences, 1994, 18(3): 53−56.
    [14] Gjøsæter H, Wiebe P H, Knutsen T, et al. Evidence of diel vertical migration of mesopelagic sound-scattering organisms in the Arctic[J]. Frontiers in Marine Science, 2017, 4: 332. doi: 10.3389/fmars.2017.00332
    [15] 刘顺会, 孙松, 韩博平. 浮游动物昼夜垂直迁移机理的主要假说及其研究进展[J]. 生态科学, 2008, 27(6): 515−521. doi: 10.3969/j.issn.1008-8873.2008.06.014

    Liu Shunhui, Sun Song, Han Boping. Hypotheses and theories of mechanisms underlying the diel vertical migration of zooplankton: a review[J]. Ecological Science, 2008, 27(6): 515−521. doi: 10.3969/j.issn.1008-8873.2008.06.014
    [16] Kaartvedt S, Røstad A, Aksnes D L. Changing weather causes behavioral responses in the lower mesopelagic[J]. Marine Ecology Progress Series, 2017, 574: 259−263. doi: 10.3354/meps12185
    [17] Klevjer T A, Irigoien X, Røstad A, et al. Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers[J]. Scientific Reports, 2016, 6: 19873. doi: 10.1038/srep19873
    [18] Cohen J H, Berge J, Moline M A, et al. Is ambient light during the high arctic polar night sufficient to act as a visual cue for zooplankton[J]. PLoS One, 2015, 10(6): e0126247. doi: 10.1371/journal.pone.0126247
    [19] Aksnes D L, Røstad A, Kaartvedt S, et al. Light penetration structures the deep acoustic scattering layers in the global ocean[J]. Science Advances, 2017, 3(5): e1602468. doi: 10.1126/sciadv.1602468
    [20] 吕连港, 乔方利, 葛人峰, 等. 后向散射强度与温跃层关系研究[J]. 海洋科学进展, 2003, 21(4): 465−470. doi: 10.3969/j.issn.1671-6647.2003.04.014

    Lü Liangang, Qiao Fangli, Ge Renfeng, et al. Study on the relationship between backscatter strength and thermocline[J]. Advances in Marine Science, 2003, 21(4): 465−470. doi: 10.3969/j.issn.1671-6647.2003.04.014
    [21] Teo S L H, Kudela R M, Rais A, et al. Estimating chlorophyll profiles from electronic tags deployed on pelagic animals[J]. Aquatic Biology, 2009, 5(2): 195−207.
    [22] Proud R, Cox M J, Brierley A S. Biogeography of the global ocean’s mesopelagic zone[J]. Current Biology, 2017, 27(1): 113−119. doi: 10.1016/j.cub.2016.11.003
    [23] Bianchi D, Mislan K A S. Global patterns of diel vertical migration times and velocities from acoustic data[J]. Limnology and Oceanography, 2015, 61(1): 353−364.
    [24] Berge J, Cottier F, Last K S, et al. Diel vertical migration of Arctic zooplankton during the polar night[J]. Biology Letters, 2009, 5(1): 69−72. doi: 10.1098/rsbl.2008.0484
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  632
  • HTML全文浏览量:  38
  • PDF下载量:  259
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-26
  • 修回日期:  2018-10-24
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-07-25

目录

    /

    返回文章
    返回