留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近惯性内波破碎混合方案对MOM4模式的影响

吴方华 范植松 楚合涛

吴方华, 范植松, 楚合涛. 近惯性内波破碎混合方案对MOM4模式的影响[J]. 海洋学报, 2019, 41(3): 1-11. doi: 10.3969/j.issn.0253-4193.2019.03.001
引用本文: 吴方华, 范植松, 楚合涛. 近惯性内波破碎混合方案对MOM4模式的影响[J]. 海洋学报, 2019, 41(3): 1-11. doi: 10.3969/j.issn.0253-4193.2019.03.001
Wu Fanghua, Fan Zhisong, Chu Hetao. Effects of near-inertial internal wave breaking mixing scheme on the MOM4 model[J]. Haiyang Xuebao, 2019, 41(3): 1-11. doi: 10.3969/j.issn.0253-4193.2019.03.001
Citation: Wu Fanghua, Fan Zhisong, Chu Hetao. Effects of near-inertial internal wave breaking mixing scheme on the MOM4 model[J]. Haiyang Xuebao, 2019, 41(3): 1-11. doi: 10.3969/j.issn.0253-4193.2019.03.001

近惯性内波破碎混合方案对MOM4模式的影响

doi: 10.3969/j.issn.0253-4193.2019.03.001
基金项目: 国家重点研发计划"全球变化及应对"重点专项项目(2016YFA0602101,2017YFA0604104);中国气象局气候研究开放课题青年基金2017年度资助项目

Effects of near-inertial internal wave breaking mixing scheme on the MOM4 model

  • 摘要: 风生近惯性内波破碎引起的跨等密度面混合在海洋内部混合中起重要作用。然而其参数化对海洋模式的模拟影响仍有待进一步认识。本文给出的是在模块化海洋模式(MOM)中海洋表面边界层以下引入一个考虑风驱动近惯性内波破碎引起的跨等密度面混合参数化方案的研究工作。模拟结果显示,该方案有效改善MOM4模拟的上层1 000 m以上的温盐偏差,特别是在北太平洋和北大西洋的通风地区。数值试验表明,风生近惯性内波破碎有可能是维持海洋通风过程的重要机制之一,它使得海洋通风区的位温变冷,盐度变淡,整层等位密面加深。维持的通风过程使得北太平洋副极地大涡的影响延伸到副热带大涡。从而模拟的北太平洋中层水源头及其副热带大涡东侧的温盐更接近观测实际。同时,模拟的北大西洋经圈翻转环流强度也更为合理。
  • Gent P R, McWilliams J C. Isopycnal mixing in ocean circulation models[J]. Journal of Physical Oceanography, 1990, 20(1): 150-160.
    MacKinnon J A, Zhao Zhongxiang, Whalen C B, et al. Climate process team on internal wave-driven ocean mixing[J]. Bulletin of the American Meteorological Society, 2017, 98(11): 2429-2454.
    Alford M H, MacKinnon J A, Simmons H L, et al. Near-inertial internal gravity waves in the ocean[J]. Annual Review of Marine Science, 2016, 8: 95-123.
    Kraus E B, Turner J S. A one-dimensional model of the seasonal thermocline. Ⅱ. The general theory and its consequences[J]. Tellus, 1967, 19(1): 98-106.
    Chen Dake, Rothstein L M, Busalacchi A J. A hybrid vertical mixing scheme and its application to tropical ocean models[J]. Journal of Physical Oceanography, 1994, 24(10): 2156-2179.
    Large W G, McWilliams J C, Doney S C. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization[J]. Reviews of Geophysics, 1994, 32(4): 363-403.
    Pacanowski R C, Philander S G H. Parameterization of vertical mixing in numerical models of tropical oceans[J]. Journal of Physical Oceanography, 1981, 11(11): 1443-1451.
    Mellor G L, Yamada T. Development of a turbulence closure model for geophysical fluid problems[J]. Reviews of Geophysics, 1982, 20(4): 851-875.
    St. Laurent L C, Nash J D. An examination of the radiative and dissipative properties of deep ocean internal tides[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2004, 51(25/26): 3029-3042.
    Simmons H L, Jayne S R, St. Laurent L C, et al. Tidally driven mixing in a numerical model of the ocean general circulation[J]. Ocean Modelling, 2004, 6(3/4): 245-263.
    MacKinnon J, St Laurent L, Naveira Garabato A C. Diapycnal mixing processes in the ocean interior[M]//Siedler G, Griffies S, Gould J, et al. Ocean Circulation and Climate: A 21st Century Perspective. 2nd ed. Oxford: Academic Press, 2013.
    Jing Zhao, Wu Lixin. Intensified diapycnal mixing in the midlatitude western boundary currents[J]. Scientific Reports, 2014, 4: 7412.
    Oka A, Niwa Y. Pacific deep circulation and ventilation controlled by tidal mixing away from the sea bottom[J]. Nature Communications, 2013, 4: 2419.
    Fan Zhisong, Shang Zhenqi, Zhang Shanwu, et al. A parameterization scheme of vertical mixing due to inertial internal wave breaking in the ocean general circulation model[J]. Acta Oceanologica Sinica, 2015, 34(1): 11-12.
    Furuichi N, Hibiya T, Niwa Y. Model-predicted distribution of wind-induced internal wave energy in the world's oceans[J]. Journal of Geophysical Research: Oceans, 2008, 113(C9): C09034.
    Jing Zhao, Wu Lixin, Ma Xiaohui, et al. Overlooked role of mesoscale winds in powering ocean diapycnal mixing[J]. Scientific Reports, 2016, 6: 37180.
    Jochum M, Briegleb B P, Danabasoglu G, et al. The impact of oceanic near-inertial waves on climate[J]. Journal of Climate, 2013, 26(9): 2833-2844.
    刘海龙, 俞永强, 李薇, 等. LASG/IAP气候系统海洋模式(LICOM1.0)参考手册[M]. 北京: 科学出版社, 2004. Liu Hailong, Yu Yongqiang, Li Wei, et al. Manual for LASG/IAP Climate System Ocean Model (LICOM1.0)[M]. Beijing: Science Press, 2004.
    尚真琦, 刘海龙, 范植松, 等. LICOM模式中不同混合方案的比较研究[J]. 中国海洋大学学报, 2015, 45(10): 1-6. Shang Zhenqi, Liu Hailong, Fan Zhisong, et al. A comparative study of different mixing schemes in Framework of the LICOM[J]. Periodical of Ocean University of China, 2015, 45(10): 1-6.
    刘奇奇, 范植松, 胡瑞金, 等. 北太平洋中层水模拟的改进[J]. 中国海洋大学学报, 2016, 46(10): 1-9. Liu Qiqi, Fan Zhisong, Hu Ruijin, et al. An improvement of modeling the North Pacific intermediate water[J]. Periodical of Ocean University of China, 2016, 46(10): 1-9.
    Canuto V M, Howard A, Cheng Y, et al. Ocean turbulence. Part Ⅰ: one-point closure model-momentum and heat vertical diffusivities[J]. Journal of Physical Oceanography, 2001, 31(6): 1413-1426.
    Canuto V M, Howard A, Cheng Y, et al. Ocean turbulence. Part Ⅱ: vertical diffusivities of momentum, heat, salt, mass, and passive scalars[J]. Journal of Physical Oceanography, 2002, 32(1): 240-264.
    Griffies S M, Harrison M J, Pacanowski R C, et al. A Technical Guide to MOM4[M]. Princeton, USA: NOAA/Geophysical Fluid Dynamics Laboratory, 2004.
    Xin Xiaoge, Wu Tongwen, Zhang Jie. Introduction of CMIP5 experiments carried out with the climate system models of Beijing Climate Center[J]. Advances in Climate Change Research, 2013, 4(1): 41-49.
    Wu Tongwen, Li Weiping, Ji Jinjun, et al. Global carbon budgets simulated by the Beijing climate center climate system model for the last century[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(10): 4326-4347.
    李清泉, 谭娟, 王兰宁, 等. 全球海洋碳循环模式MOM4_L40对碳和营养物自然分布的模拟[J]. 地球物理学报, 2015, 58(1): 63-78. Li Qingquan, Tan Juan, Wang Lanning, et al. Simulation of distribution of carbon and nutrient in the ocean based on the global oceanic carbon cycle model MOM4_L40[J]. Chinese Journal of Geophysics, 2015, 58(1): 63-78.
    Murray R J. Explicit generation of orthogonal grids for ocean models[J]. Journal of Computational Physics, 1996, 126(2): 251-273.
    Morel A, Antoine D. Heating rate within the upper ocean in relation to its bio-optical state[J]. Journal of Physical Oceanography, 1994, 24(7): 1652-1665.
    Locarnini R A, Mishonov A V, Antonov J I, et al. World Ocean Atlas 2013, Volume 1: Temperature[M]//Levitus S, Mishonov A. NOAA Atlas NESDIS 73. Silver Spring, MD: U.S. Department of Commerce, National Oceanic and Atmospheric Administration, 2013.
    Zweng M M, Reagan J R, Antonov J I, et al. World Ocean Atlas 2013, Volume 2: salinity[M]//Levitus S, Mishonov A. NOAA Atlas NESDIS 74. Silver Spring, MD: U.S. Department of Commerce, National Oceanic and Atmospheric Administration, 2013.
    Large W G, Yeager S G. The global climatology of an interannually varying air-sea flux data set[J]. Climate Dynamics, 2009, 33(2/3): 341-364.
    Yasuda I. North Pacific intermediate water: progress in SAGE (subarctic gyre experiment) and related projects[J]. Journal of Oceanography, 2004, 60(2): 385-395.
    Sverdrup H U, Johnson M W, Fleming R H. The oceans, their physics, chemistry, and general biology[M]. New York: Prentice-Hall, 1942.
    Reid J L Jr. Intermediate waters of the Pacific Ocean[R]. The Johns Hopkins Oceanographic Studies, No. 2. Baltimore, Maryland: Johns Hopkins Press, 1965.
    Talley L D. Distribution and formation of North Pacific Intermediate Water[J]. Journal of Physical Oceanography, 1993, 23(3): 517-537.
  • 加载中
计量
  • 文章访问数:  473
  • HTML全文浏览量:  21
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-08
  • 修回日期:  2018-04-07

目录

    /

    返回文章
    返回