留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋环境因子对澳洲鲐亲体补充量关系的影响——基于贝叶斯模型平均法的研究

张畅 陈新军

张畅, 陈新军. 海洋环境因子对澳洲鲐亲体补充量关系的影响——基于贝叶斯模型平均法的研究[J]. 海洋学报, 2019, 41(2): 99-106. doi: 10.3969/j.issn.0253-4193.2019.02.009
引用本文: 张畅, 陈新军. 海洋环境因子对澳洲鲐亲体补充量关系的影响——基于贝叶斯模型平均法的研究[J]. 海洋学报, 2019, 41(2): 99-106. doi: 10.3969/j.issn.0253-4193.2019.02.009
Zhang Chang, Chen Xinjun. The impact of environmental factors on stock-recruitment relationship of spotted mackerel-based on Bayesian model averaging method[J]. Haiyang Xuebao, 2019, 41(2): 99-106. doi: 10.3969/j.issn.0253-4193.2019.02.009
Citation: Zhang Chang, Chen Xinjun. The impact of environmental factors on stock-recruitment relationship of spotted mackerel-based on Bayesian model averaging method[J]. Haiyang Xuebao, 2019, 41(2): 99-106. doi: 10.3969/j.issn.0253-4193.2019.02.009

海洋环境因子对澳洲鲐亲体补充量关系的影响——基于贝叶斯模型平均法的研究

doi: 10.3969/j.issn.0253-4193.2019.02.009
基金项目: 海洋局公益性行业专项(20155014);上海市科技创新计划(15DZ1202200)。

The impact of environmental factors on stock-recruitment relationship of spotted mackerel-based on Bayesian model averaging method

  • 摘要: 澳洲鲐(Scomber australasicus)是西北太平洋重要的中上层经济鱼类,生命周期相对较短,资源量受补充量影响明显,了解澳洲鲐太平洋群系补充量状况对掌握其资源量及确保其可持续利用具有重要的意义。本文利用产卵场1(30°~32°N,130°~132°E)海表面温度(sea surface temperature,SST1)、产卵场2(34°~35°N,138°~141°E)海表面温度(SST2)、索饵场(35°~45°N,140°~160°E)海表面温度(SST3)、潮位差(tidal range,TR)、太平洋年代际涛动(Pacific decadal oscillation,PDO)和亲体量(spawning stock biomass,SSB)6个影响因子任意组合与补充量构建多个模型,运用贝叶斯模型平均法(Bayesian model averaging,BMA)分析各个环境因子对资源补充量的解释能力,并预测其补充量的变化。结果表明,SSB对补充量具有最长期且稳定的解释能力,其次是SST3,PDO、TR、SST2、SST1也对补充量模型具有一定的解释能力。SST3是环境因子中影响最大的因子,可能是由于补充群体在索饵场内生活时间较长,索饵场温度对仔鱼或鱼卵的生长存活有较大的影响。研究认为,基于BMA的组合预报综合考虑了各个模型的优势,优于单一模型,可用于澳洲鲐资源补充量的预测。
  • Collette B, Acero A, Canales R, et al. Scomber australasicus. The IUCN red list of threatened species[EB/OL].[2017-10-12]. http://www.iucnredlist.org/details/170329/0.
    Yukami R, Ohshimo S, Yoda M, et al. Estimation of the spawning grounds of chub mackerel Scomber japonicus and spotted mackerel Scomber australasicus in the East China Sea based on catch statistics and biometric data[J]. Fisheries Science, 2009, 75(1):167-174.
    程娇. 西北太平洋两种鲐属鱼类的分子系统地理学研究[D]. 青岛:中国海洋大学, 2013. Cheng Jiao. Molecular phylogeography of Two Scomber species in northwestern Pacific[D]. Qingdao:Ocean University of China, 2013.
    Ryuga U, Watanabe C, Uemura Y, et al. Stock assessment and evaluation for the Pacific stock of spotted mackerel[R]. Japan:the National Research Institute of Fisheries Agency, 2015:16-20.
    严利平, 李建生, 唐敏, 等. 应用体长结构VPA评估东海群系澳洲鲐资源量[J]. 中国水产科学, 2007, 14(Z1):97-102. Yan Liping, Li Jiansheng, Tang Min, et al. Assessment of Scomber australasicus biomass in the East China Sea community by Length-Structure VPA[J]. Journal of Fishery Sciences of China, 2007, 14(Z1):97-102.
    詹秉义. 渔业资源评估[M]. 北京:中国农业出版社, 1995. Zhan Bingyi. Fish Stock Assessment[M]. Beijing:Agricultural Sciences in China, 1995.
    Mackenzie B R, Horbowy J, Köster F W. Incorporating environmental variability in stock assessment:predicting recruitment, spawner biomass, and landings of sprat (Sprattus sprattus) in the Baltic Sea[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2007, 65(7):1334-1341.
    郑芳, 刘群, 王艳君. 环境因子对黄海鳀鱼亲体-补充量关系影响的初步研究[J]. 南方水产, 2008, 4(2):15-20. Zheng Fang, Liu Qun, Wang Yanjun. Study of impacts of environmental factors on stock and recruitment relationship of the anchovy stock in the Yellow Sea[J]. South China Fisheries Science, 2008, 4(2):15-20.
    张辉, 袁兴伟, 程家骅. 东海区小黄鱼繁殖模型优化选择及其管理应用研究[J]. 中国水产科学, 2010, 17(6):1300-1308. Zhang Hui, Yuan Xingwei, Cheng Jiahua. Optimizing selection and application of reproduction model of small yellow croaker in the East China Sea[J]. Journal of Fishery Sciences of China, 2010, 17(6):1300-1308.
    Draper D. Assessment and propagation of model uncertainty[J]. Journal of the Royal Statistical Society:Series B (Methodological), 1995, 57(1):45-97.
    Hodges J S. Uncertainty, policy analysis and statistics[J]. Statistical Science, 1987, 2(3):259-275.
    Graefe A, Küchenhoff H, Stierle V, et al. Limitations of Ensemble Bayesian Model Averaging for forecasting social science problems[C]//Combining forecasts:evidence on the relative accuracy of the simple average and Bayesian model averaging for predicting social science problems. Glasgow:European Consortium for Political Research General Conference University of Glasgow, 2014:1-12.
    Brodziak J, Legault C M. Model averaging to estimate rebuilding targets for overfished stocks[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62(3):544-562.
    Posada D, Buckley T R. Model selection and model averaging in phylogenetics:advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests[J]. Systematic Biology, 2004, 53(5):793-808.
    Jacobson T, Karlsson S. Finding good predictors for inflation:a Bayesian model averaging approach[J]. Journal of Forecasting, 2002, 23(7):479-496.
    Ryuga U, Watanabe C, Uemura Y, et al. Stock assessment and evaluation for the Pacific stock of spotted mackerel[R]. Japan:the National Research Institute of Fisheries Agency, 2016:4-13.
    NOAA. VPA/ADAPT Version 3.0 reference manual[CP/OL].[2014-08-03]. http://nft.nefsc.noaa.gov/VPA.html.
    陈新军, 曹杰, 田思泉, 等. 表温和黑潮年间变化对西北太平洋柔鱼渔场分布的影响[J]. 大连水产学院学报, 2010, 25(2):119-126. Chen Xinjun, Cao Jie, Tian Siquan, et al. Effect of inter-annual change in sea surface water temperature and Kuroshio on fishing ground of squid Ommastrephes bartramii in the Northwest Pacific[J]. Journal of Dalian Fisheries University, 2010, 25(2):119-126.
    Espino M. The Jack mackerel Trachurus murphyi and the environmental macro-scale variables[J]. Revista Peruana de Biología, 2013, 20(1):9-20.
    Megrey B A, Hare J A, Stockhausen W T, et al. A cross-ecosystem comparison of spatial and temporal patterns of covariation in the recruitment of functionally analogous fish stocks[J]. Progress in Oceanography, 2009, 81(1/4):63-92.
    吕俊梅, 琚建华, 张庆云, 等. 太平洋海温场两种不同时间尺度气候模态的分析[J]. 海洋学报, 2005, 27(5):30-37. Lv Junmei, Ju Jianhua, Zhang Qingyun, et al. The analysis of two climate patterns on different time scales in Pacific sea temperature fields[J]. Haiyang Xuebao, 2005, 27(5):30-37.
    王亮. 贝叶斯模型平均方法研究综述与展望[J]. 技术经济与管理研究, 2016(3):19-23. Wang Liang. Overview and prospect of Bayesian model averaging[J]. Technoeconomics & Management Research, 2016(3):19-23.
    Zeugner S. Bayesian Model Averaging with BMS. R-Package BMS[CP/OL].[2011-05-05]. http://bms.zeugner.eu.
    Amini S, Parmeter C F. Bayesian model averaging in R[J]. Journal of Economic and Social Measurement, 2011, 36(4):253-287.
    石琳, 刘洋. 贝叶斯模型平均法在流域组合预报中的应用[J]. 水利科技与经济, 2014, 20(12):62-67. Shi Lin, Liu Yang. Applications the BMA method in watershed combination forecast[J]. Water Conservancy Science and Technology and Economy, 2014, 20(12):62-67.
    Wright J H. Forecasting U.S. inflation by Bayesian model averaging[J]. Journal of Forecasting, 2003, 28(2):131-144.
    刘尊雷, 袁兴伟, 杨林林, 等. 亲体量和环境对东海小黄鱼补充成功率的影响[J]. 应用生态学报, 2015, 26(2):588-600. Liu Zunlei, Yuan Xingwei, Yang Linlin, et al. Effect of stock abundance and environmental factors on the recruitment success of small yellow croaker in the East China Sea[J]. Chinese Journal of Applied Ecology, 2015, 26(2):588-600.
    李建生, 严利平, 程家骅. 2006年夏秋季东海群系澳洲鲐数量分布特征[J]. 海洋渔业, 2008, 30(1):49-55. Li Jiansheng, Yan Liping, Cheng Jiahua. On the quantitative distribution characteristics of Scomber australasicus colony in the East China Sea during summer and autumn 2006[J]. Marine Fisheries, 2008, 30(1):49-55.
    Tanoue T, Kurata Y, Tokudome Y. On the spawning-season of the mackerel, Pneumatophorus tapeinocephalus, Bleeker in three different regions, East China Sea, Satsunan and Izu[J]. Nihon Suisan Gakkaishi, 1960, 26(3):277-283.
    梁思梅. 台湾北部海域春季鲭鱼仔鱼之日龄与成长[D]. 台北:国立台湾大学, 2004. Liang Simei. Age and growth of spring Scomber larvae in the northern waters of Taiwan[D]. Taipei:National Taiwan University, 2004.
    Takahashi M, Watanabe Y. Developmental and growth rates of Japanese anchovy Engraulis japonicus during metamorphosis in the Kuroshio-Oyashio transitional waters[J]. Marine Ecology Progress Series, 2004, 282:253-260.
    Sinclair M, Tremblay M J. Timing of spawning of atlantic herring (Clupea harengus harengus) populations and the match-mismatch theory[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1984, 41(7):1055-1065.
    Kamimura Y, Takahashi M, Yamashita N, et al. Larval and juvenile growth of chub mackerel Scomber japonicus in relation to recruitment in the western North Pacific[J]. Fisheries Science, 2015, 81(3):505-513.
    Sassa C, Tsukamoto Y. Distribution and growth of Scomber japonicus and S. australasicus larvae in the southern East China Sea in response to oceanographic conditions[J]. Marine Ecology Progress Series, 2010, 419:185-199.
    王闪闪. 黑潮、厄尔尼诺-南方涛动和太平洋年代际涛动的相互联系及对气候影晌的研究[D]. 兰州:兰州大学, 2015. Wang Shanshan. The interaction of the Kuroshio, PDO and ENSO and their impacts on climate[D]. Lanzhou:Lanzhou University, 2015.
    Zwolinski J P, Demer D A. Environmental and parental control of Pacific sardine (Sardinops sagax) recruitment[J]. ICES Journal of Marine Science, 2014, 71(8):2198-2207.
    余为. 西北太平洋柔鱼冬春生群对气候与环境变化的响应机制研究[D]. 上海:上海海洋大学, 2016. Yu Wei. Response mechanism of winter-spring cohort of neon flying squid to the climatic and environmental variability in the Northwest Pacific Ocean[D]. Shanghai:Shanghai Ocean University, 2016.
  • 加载中
计量
  • 文章访问数:  453
  • HTML全文浏览量:  19
  • PDF下载量:  253
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-21
  • 修回日期:  2018-05-17

目录

    /

    返回文章
    返回