留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海底宏渗漏气体走航式海洋电阻率法探测效果模拟与观测系统设计

尚可旭 郭秀军 吴景鑫

尚可旭, 郭秀军, 吴景鑫. 海底宏渗漏气体走航式海洋电阻率法探测效果模拟与观测系统设计[J]. 海洋学报, 2019, 41(1): 142-150. doi: 10.3969/j.issn.0253-4193.2019.01.014
引用本文: 尚可旭, 郭秀军, 吴景鑫. 海底宏渗漏气体走航式海洋电阻率法探测效果模拟与观测系统设计[J]. 海洋学报, 2019, 41(1): 142-150. doi: 10.3969/j.issn.0253-4193.2019.01.014
Shang Kexu, Guo Xiujun, Wu Jingxin. Simulation analysis of the detection effect of navigation marine direct current resistivity to seabed macro seepage and a system's design[J]. Haiyang Xuebao, 2019, 41(1): 142-150. doi: 10.3969/j.issn.0253-4193.2019.01.014
Citation: Shang Kexu, Guo Xiujun, Wu Jingxin. Simulation analysis of the detection effect of navigation marine direct current resistivity to seabed macro seepage and a system's design[J]. Haiyang Xuebao, 2019, 41(1): 142-150. doi: 10.3969/j.issn.0253-4193.2019.01.014

海底宏渗漏气体走航式海洋电阻率法探测效果模拟与观测系统设计

doi: 10.3969/j.issn.0253-4193.2019.01.014
基金项目: 国家自然科学基金(41772307);国家重点研发项目(2017YFC0307701);国家自然科学基金重大仪器专项(41427803)。

Simulation analysis of the detection effect of navigation marine direct current resistivity to seabed macro seepage and a system's design

  • 摘要: 为实现海底宏渗漏气体连续调查,提出了一种走航式海洋电阻率探测技术。根据前人原位观测资料和含气水体电阻率特征构建地电模型;采用数值模拟和室内试验方法获得不同参数电阻率映像剖面,分析确定探测剖面异常特征,评价探测效果。在此基础上进一步进行了探测系统设计和实验测试。研究结果表明,走航式海洋电法探测电缆可由2个供电电流极和8个电位测量极组成,电位极距需小于0.05 m;测量可采用偶极装置通过并行采集方式实现。气体分布区表现为高阻异常,异常模式由走航速度、排列长度和气体分布区横向宽度共同决定,可分为7种情形;探测电阻率极大值和气体喷出流速存在正相关指数关系。该技术可实现气体分布范围和喷出速率快速探测。
  • Washburn L, Johnson C, Gotschalk C C, et al. A gas-capture buoy for measuring bubbling gas flux in oceans and lakes[J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(8):1411-1420.
    Leifer I, Boles J. Measurement of marine hydrocarbon seep flow through fractured rock and unconsolidated sediment[J]. Marine and Petroleum Geology, 2005, 22(4):551-568.
    Takahashi H, Asakawa E, Hayashi T, et al. Development of ocean bottom multi-component seismic system for methane hydrate dissociation monitoring[C]. Proceedings of the Offshore Technology Conference. Houston, Texas, USA:Offshore Technology Conference, 2011.
    邸鹏飞, 冯东, 高立宝, 等. 海底冷泉流体渗漏的原位观测技术及冷泉活动特征[J]. 地球物理学进展, 2008, 23(5):1592-1602. Di Pengfei, Feng Dong, Gao Libao, et al. In situ measurement of fluid flow and signatures of seep activity at marine seep sites[J]. Progress in Geophysics, 2008, 23(5):1592-1602.
    龙建军, 黄为, 邹大鹏, 等. 海底天然气渗漏流量声学测量方法及初步实验研究[J]. 热带海洋学报, 2012, 31(5):100-105. Long Jianjun, Huang Wei, Zou Dapeng, et al. Method of measuring bubble flow from cool seeps on seafloor using acoustic transmission and preliminary experiments[J]. Journal of Tropical Oceanography, 2012, 31(5):100-105.
    刘润华, 邹大鹏, 龙建军, 等. 超声多普勒测量海底渗漏气泡流速的实验研究[J]. 海洋技术学报, 2016, 35(2):46-50. Liu Runhua, Zou Dapeng, Long Jianjun, et al. Experimental study on ultrasonic Doppler measurement of the velocity of seafloor leakage bubbles[J]. Journal of Ocean Technology, 2016, 35(2):46-50.
    Nikolovska A, Sahling H, Bohrmann G. Hydroacoustic methodology for detection, localization, and quantification of gas bubbles rising from the seafloor at gas seeps from the eastern Black Sea[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(10):Q10010.
    Von Deimling J S. Gas leakage and seepage detection using multibeam mapping sonar[C]. Proceedings of the HYDRO International. Denver, Colorado, USA, 2010.
    Lagabrielle R. The effect of water on direct current resistivity measurement from the sea, river or lake floor[J]. Geoexploration, 1983, 21(2):165-170.
    Loke M H, Barker R D. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method[J]. Geophysical Prospecting, 1996, 44(1):131-152.
    Goto T N, Kasaya T, Machiyama H, et al. A marine deep-towed DC resistivity survey in a methane hydrate area, Japan Sea[J]. Exploration Geophysics, 2008, 39(1):52-59.
    Telford W M, Geldart L P, Sheriff R E. 应用地球物理[M]. 陈石, 孙少波, 高志亮, 等译. 北京:科学出版社, 2011. Telford W M, Geldart L P, Sheriff R E. Applied geophysics[M]. Chen Shi, Sun Shaobo, Gao Zhiliang, et al, trans. Beijing:Science Press, 2011.
    Naudts L, Greinert J, Poort J, et al. Active venting sites on the gas-hydrate-bearing Hikurangi Margin, off New Zealand:Diffusive-versus bubble-released methane[J]. Marine Geology, 2010, 272(1/4):233-250.
    Sauter E J, Muyakshin S I, Charlou J L, et al. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles[J]. Earth and Planetary Science Letters, 2006, 243(3/4):354-365.
    Leifer I, Patro R K, Bowyer P. A study on the temperature variation of rise velocity for large clean bubbles[J]. Journal of Atmospheric and Oceanic Technology, 2010, 17(10):1392-1402.
  • 加载中
计量
  • 文章访问数:  407
  • HTML全文浏览量:  3
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-06
  • 修回日期:  2018-06-08

目录

    /

    返回文章
    返回