留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种计算有限水深波能功率的新方法

李晖 何宏舟 杨绍辉 Sheng Wanan

李晖, 何宏舟, 杨绍辉, Sheng Wanan. 一种计算有限水深波能功率的新方法[J]. 海洋学报, 2018, 40(12): 1-10. doi: 10.3969/j.issn.0253-4193.2018.12.001
引用本文: 李晖, 何宏舟, 杨绍辉, Sheng Wanan. 一种计算有限水深波能功率的新方法[J]. 海洋学报, 2018, 40(12): 1-10. doi: 10.3969/j.issn.0253-4193.2018.12.001
Li Hui, He Hongzhou, Yang Shaohui, Sheng Wanan. A new method for calculating wave energy power in finite water depth[J]. Haiyang Xuebao, 2018, 40(12): 1-10. doi: 10.3969/j.issn.0253-4193.2018.12.001
Citation: Li Hui, He Hongzhou, Yang Shaohui, Sheng Wanan. A new method for calculating wave energy power in finite water depth[J]. Haiyang Xuebao, 2018, 40(12): 1-10. doi: 10.3969/j.issn.0253-4193.2018.12.001

一种计算有限水深波能功率的新方法

doi: 10.3969/j.issn.0253-4193.2018.12.001
基金项目: 国家自然科学基金项目(51409118,51779104);Science Foundation Ireland (SFI) Centre for Marine and Renewable Energy Research (MaREI)(12/RC/2302)。

A new method for calculating wave energy power in finite water depth

  • 摘要: 海洋波浪能平均功率的准确计算是波浪能开发和利用的基础。实践中,波浪能转换装置一般安装在有限水深区域。对于随机波,只有当详尽的波浪谱已知的时候,有限水深区的波能功率才能被准确计算出来。由于种种原因,实践中波浪的实测数据大多以散点图或有义波高和统计波周期的形式给出,而波浪谱信息有时则很难获得。基于这种情况,传统上人们利用无限水深条件下的相关公式来估算有限水深区域的波能功率,但这种做法会造成较大的误差。本研究显示,对于50 m水深的理论波谱JONSWAP谱来说该误差高达14.6%。为了提高波能功率计算的准确性,本文提出了一种基于能量频率的一阶和二阶近似算法,可以在未知波浪谱的情况下较为准确地计算不同水深时的波能功率。针对两种理论波浪谱的计算结果表明,本方法在计算有限带宽内的波能功率时计算误差低于2.8%。
  • 张运秋, 游亚戈, 胡金鹏, 等. 波浪能资源调查基础研究[C]//中国可再生能源学会海洋能专业学术委员会第三届学术讨论会论文集. 温岭:中国可再生能源学会, 2010:235-239. Zhang Yunqiu, You Yage, Hu Jinpeng, et al. Basic research on wave energy resources survey[C]//Proceedings of the third symposium on marine energy professional academic committee of China Renewable Energy Society. Wenling:Chinese Renewable Energy Society, 2010:235-239.
    姜波, 汪小勇, 徐辉奋, 等. 波浪能资源评估标准中有关采标问题的探讨[J]. 标准科学, 2015(1):39-42. Jiang Bo, Wang Xiaoyong, Xu Huifen, et al. Discussion on adoption standards for wave energy resource assessment[J]. Standard Science, 2015(1):39-42.
    Johanning L, Smith G H, Wolfram J. Measurements of static and dynamic mooring line damping and their importance for floating WEC devices[J]. Ocean Engineering, 2007, 34(14/15):1918-1934.
    Folley M, Whittaker T J T. Analysis of the nearshore wave energy resource[J]. Renewable Energy, 2009, 34(7):1709-1715.
    Magagna D, Uihleih A. Ocean energy development in Europe:current status and future perspectives[J]. International Journal of Marine Energy, 2015, 11:84-104.
    Cornett A M. A global wave energy resource assessment[C]//Proceedings of the 18th International Offshore and Polar Engineering Conference. Vancouver, Canada:International Society of Offshore and Polar Engineers, 2008.
    Atan R, Goggins J, Nash S. A detailed assessment of the wave energy resource at the Atlantic Marine Energy Test Site[J]. Energies, 2016, 9(11):967.
    Wan Yong, Zhang Jie, Meng Junmin, et al. Exploitable wave energy assessment based on ERA-Interim reanalysis data-A case study in the East China Sea and the South China Sea[J]. Acta Oceanologica Sinica, 2015, 34(9):143-155.
    Wan Yong, Zhang Jie, Meng Junmin, et al. Study on wave energy resource assessing method based on altimeter data-A case study in Northwest Pacific[J]. Acta Oceanologica Sinica, 2016, 35(3):117-129.
    Sheng Wanan, Li Hui. A method for energy and resource assessment of waves in finite water depths[J]. Energies, 2017, 10(4):460.
    IEC. IEC TS 62600-101, Marine energy-wave, tidal and other water current converters-Part 101:wave energy resource assessment and characterization[S]. International Electrotechnical Commission, 2015.
    Mackay E B, Bahaj A S, Challenor P G. Uncertainty in wave energy resource assessment. Part 1:historic data[J]. Renewable Energy, 2010, 35(8):1792-1808.
    Newman J N. Marine hydrodynamics[M]. Cambridge:The MIT Press, 1977.
  • 加载中
计量
  • 文章访问数:  437
  • HTML全文浏览量:  10
  • PDF下载量:  277
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-09
  • 修回日期:  2018-09-18

目录

    /

    返回文章
    返回