留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同海域沉积物对尿素吸附的实验模拟研究

薛峤娜 胡博 谭丽菊 王江涛

薛峤娜, 胡博, 谭丽菊, 王江涛. 不同海域沉积物对尿素吸附的实验模拟研究[J]. 海洋学报, 2018, 40(10): 190-199. doi: 10.3969/j.issn.0253-4193.2018.10.018
引用本文: 薛峤娜, 胡博, 谭丽菊, 王江涛. 不同海域沉积物对尿素吸附的实验模拟研究[J]. 海洋学报, 2018, 40(10): 190-199. doi: 10.3969/j.issn.0253-4193.2018.10.018
Xue Qiaona, Hu Bo, Tan Liju, Wang Jiangtao. Experimental simulation of urea adsorption on sediments in different sea areas, China[J]. Haiyang Xuebao, 2018, 40(10): 190-199. doi: 10.3969/j.issn.0253-4193.2018.10.018
Citation: Xue Qiaona, Hu Bo, Tan Liju, Wang Jiangtao. Experimental simulation of urea adsorption on sediments in different sea areas, China[J]. Haiyang Xuebao, 2018, 40(10): 190-199. doi: 10.3969/j.issn.0253-4193.2018.10.018

不同海域沉积物对尿素吸附的实验模拟研究

doi: 10.3969/j.issn.0253-4193.2018.10.018
基金项目: 国家重点研发计划(2016YFC1402101);北戴河邻近海域氮磷污染及海水水质变化趋势评估(2014BDHZZ0707)。

Experimental simulation of urea adsorption on sediments in different sea areas, China

  • 摘要: 本文对采自渤海、黄海和东海3个典型海域的沉积物进行了尿素吸附/解吸的实验室模拟研究,用Freundlich吸附模型和Henry吸附模型分析了不同沉积物对尿素吸附的热力学特性,并研究了温度、沉积物粒径、有机质含量等因素对尿素在沉积物表面吸附的影响。结果表明,沉积物对尿素的吸附/解吸过程总体呈现3个阶段:快速吸附阶段(0~5 h)—慢速吸附阶段(5~12 h)—平衡阶段(12 h之后)。当水体中的尿素浓度较低时,沉积物解吸释放尿素,随着上覆水中尿素浓度逐渐增加,沉积物对上覆水中的尿素产生吸附行为,各海区沉积物对尿素的吸附能力由强至弱依次为渤海、东海、黄海,这可能与沉积物的类型有关。Freundlich方程和Henry方程均可模拟沉积物对尿素的吸附,温度、粒径以及沉积物中有机质含量等因素均对尿素在沉积物上的吸附产生影响,随着温度升高,尿素在沉积物上的吸附量变小,沉积物粒径越小,有机质含量越高,吸附尿素的能力越强,因此,揭示尿素在沉积物表面的环境行为时,必须考虑以上因素的影响。
  • Gu Binhe, Havens K E, Schelske C L, et al. Uptake of dissolved nitrogen by phytoplankton in a eutrophic subtropical lake[J]. Journal of Plankton Research, 1997, 19(6):759-770.
    Kudela R M, Cochlan W P. Nitrogen and carbon uptake kinetics and the influence of irradiance for a red tide bloom off southern California[J]. Aquatic Microbial Ecology, 2000, 21(1):31-47.
    Berg G M, Glibert P M, Lomas M W, et al. Organic nitrogen uptake and growth by the chrysophyte Aureococcus anophagefferens during a brown tide event[J]. Marine Biology, 1997, 129(2):377-387.
    Solomon C M, Collier J L, Berg G M, et al. Role of urea in microbial metabolism in aquatic systems:a biochemical and molecular review[J]. Aquatic Microbial Ecology, 2010, 59(1):67-88.
    Crandall J B, Teece M A. Urea is a dynamic pool of bioavailable nitrogen in coral reefs[J]. Coral Reefs, 2012, 31(1):207-214.
    Huang Wenmin, Bi Yonghong, Hu Zhengyu. Effects of fertilizer-urea on growth, photosynthetic activity and microcystins production of Microcystis aeruginosa isolated from Dianchi Lake[J]. Bull Environ Contam Toxicol, 2014, 92(5):514-9.
    Gobler C J, Boneillo G E, Debenham C J, et al. Nutrient limitation, organic matter cycling, and plankton dynamics during an Aureococcus anophagefferens bloom[J]. Aquatic Microbial Ecology, 2004, 35(1):31-43.
    Cornell S E, Jickells T D, Thornton C A. Urea in rainwater and atmospheric aerosol[J]. Atmospheric Environment, 1998, 32(11):1903-1910.
    Glibert P M, Harrison J, Heil C, et al. Escalating worldwide use of urea a global change contributing to coastal eutrophication[J]. Biogeochemistry, 2006, 77(3):441-463.
    秦岭. 中国尿素行业生产快速发展[J]. 化工文摘, 2001(9):54. Qin Ling. China's urea industry develops rapidly[J]. China Chemicals, 2001(9):54.
    Michael B J, Arrigo K R, Matson P A. Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean[J]. Nature, 2005, 434(7030):211-214.
    Baker K M, Gobler C J, Collier J L. Urease gene sequences from algae and heterotrophic bacteria in axenic and nonaxenic phytoplankton cultures[J]. Journal of Phycology, 2009, 45(3):625-634.
    Beckers G, Bendt A K, Krämer R, et al. Molecular identification of the urea uptake system and transcriptional analysis of urea transporter-and urease-encoding genes in Corynebacterium glutamicum[J]. Journal of Bacteriology, 2004, 186(22):7645-7652.
    Berman T, Bronk D A. Dissolved organic nitrogen:a dynamic participant in aquatic ecosystems[J]. Aquatic Microbial Ecology, 2003, 31(3):279-305.
    Johnson D, Moore L, Green S, et al. Direct and indirect effects of ammonia, ammonium and nitrate on phosphatase activity and carbon fluxes from decomposing litter in peatland[J]. Environmental Pollution, 2010, 158(10):3157-3163.
    梁重山, 杨党志, 刘丛强,等. 土壤有机质对菲的吸附-解吸平衡的影响[J]. 高等学校化学学报, 2005, 26(4):671-676. Liang Chongshan, Yang Dangzhi, Liu Congqiang, et al. Effects of soil organic matters on adsorption-desorption equilibria of phenanthrene[J]. Chemical Journal of Chinese Universities, 2005, 26(4):671-676.
    王金本. 表面活性剂在固——液界面上吸附过程的疏水效应研究[J]. 天中学刊, 2000, 15(2):26-31. Wang Jinben. The hydrophobic effect in the adsorption of surfactants on to activatated Caron[J]. Journal of Tianzhong, 2000, 15(2):26-31.
    Wang Shengrui, Jin Xiangcan, Bu Qingyun, et al. Effects of particle size, organic matter and ionic strength on the phosphate sorption in different trophic lake sediments[J]. Journal of Hazardous Materials, 2006, 128(2/3):95-105.
    罗雪梅, 刘昌明, 何孟常. 土壤与沉积物对多环芳烃类有机物的吸附作用[J]. 生态环境, 2004, 13(3):394-398. Luo Xuemei, Liu Changming, He Mengchang. Sorption of polycyclic aromatic hydrocarbons (PAHs) by soils and sediments:a review[J]. Ecology and Environment, 2004, 13(3):394-398.
    Nkedi-kizza P, Rao P S C, Johnson J W. Adsorption of diuron and 2, 4, 5 T on soil particle size separates[J]. Journal of Environmental Quality, 1983, 12(2):195-197.
    Nkedi-Kizza P, Rao P S C, Hornsby A G. Influence of organic cosolvents on sorption of hydrophobic organic chemicals by soils[J]. Environmental Science & Technology, 1985, 19(10):975-979.
  • 加载中
计量
  • 文章访问数:  521
  • HTML全文浏览量:  14
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-28
  • 修回日期:  2018-06-14

目录

    /

    返回文章
    返回