留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西太平洋冬季上层水体有色溶解有机物的分布和转化特征

王泽华 邹立 陈洪涛 史洁 杨阳

王泽华, 邹立, 陈洪涛, 史洁, 杨阳. 西太平洋冬季上层水体有色溶解有机物的分布和转化特征[J]. 海洋学报, 2018, 40(10): 180-189. doi: 10.3969/j.issn.0253-4193.2018.10.017
引用本文: 王泽华, 邹立, 陈洪涛, 史洁, 杨阳. 西太平洋冬季上层水体有色溶解有机物的分布和转化特征[J]. 海洋学报, 2018, 40(10): 180-189. doi: 10.3969/j.issn.0253-4193.2018.10.017
Wang Zehua, Zou Li, Chen Hongtao, Shi Jie, Yang Yang. Distribution and transformation of CDOM in the upper waters of western Pacific Ocean in winter[J]. Haiyang Xuebao, 2018, 40(10): 180-189. doi: 10.3969/j.issn.0253-4193.2018.10.017
Citation: Wang Zehua, Zou Li, Chen Hongtao, Shi Jie, Yang Yang. Distribution and transformation of CDOM in the upper waters of western Pacific Ocean in winter[J]. Haiyang Xuebao, 2018, 40(10): 180-189. doi: 10.3969/j.issn.0253-4193.2018.10.017

西太平洋冬季上层水体有色溶解有机物的分布和转化特征

doi: 10.3969/j.issn.0253-4193.2018.10.017
基金项目: “全球变化与海气相互作用”专项(GASI-02-PAC-ST-MSwin);国家自然科学基金项目(41176064)。

Distribution and transformation of CDOM in the upper waters of western Pacific Ocean in winter

  • 摘要: 为深入解析西太平洋溶解有机碳的生物地球化学过程,本研究于2015年12月至2016年1月,开展了西太平洋上层水体有色溶解有机物(CDOM)吸收光谱和荧光光谱特征研究。研究结果表明,西太平洋上层水体CDOM吸收系数a(320)变化范围为0.01~1.07 m-1,平均值为0.18 m-1;其较高值位于100~200 m水层,表层的海水相对含量较低,主要以有机物的光化学分解为主。采用PARAFAC分析CDOM三维荧光光谱特征,得到1种类腐殖质组分C2(252(310 nm)/405 nm)及2种类蛋白组分C1(224(276 nm)/335 nm)和C3(224(260 nm)/300 nm),其中类腐殖质荧光组分占总荧光强度的11%~22%,蛋白质荧光组分占总荧光强度的78%~89%,蛋白质荧光中类色氨酸和类络氨酸组分对荧光强度的贡献相当。洋流在大尺度上控制西太平洋CDOM的分布特征,两流交界处和环流形成区域的CDOM相对含量较高,荧光信号较强。西太上层水体CDOM相对含量和荧光信息,与温度、盐度、DO和营养盐等理化因素之间的相关分析结果表明,CDOM主要成分类蛋白质的产生主要受上层水体初级生产过程控制。
  • Hedges J I, Keil R G. Sedimentary organic matter preservation:an assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2/3):81-115.
    Markager S, Vincent W F. Spectral light attenuation and the absorption of UV and blue light in natural waters[J]. Limnology and Oceanography, 2000, 45(3):642-650.
    Shank G C, Zepp R G, Whitehead R F, et al. Variations in the spectral properties of freshwater and estuarine CDOM caused by partitioning onto river and estuarine sediments[J]. Estuarine, Coastal and Shelf Science, 2005, 65(1/2):289-301.
    Jiao Nianzhi, Herndl G J, Hansell D A, et al. Microbial production of recalcitrant dissolved organic matter:long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 2010, 8(8):593-599.
    Coble P G. Marine optical biogeochemistry:the chemistry of ocean color[J]. Chemical Reviews, 2007, 107(2):402-418.
    Mopper K, Zhou Xianliang, Kieber R J, et al. Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle[J]. Nature, 1991, 353(6339):60-62.
    Valentine R L, Zepp R G. Formation of carbon monoxide from the photodegradation of terrestrial dissolved organic carbon in natural waters[J]. Environmental Science & Technology, 1993, 27(2):409-412.
    Williams D E. Population ecology of bleaching-stressed Amphistegina gibbosa in the Florida Keys (1991-1999):influence of solar radiation on reef-dwelling Foraminifera[D]. Florida:University of South Florida, 2002.
    Zepp R G, Shank G C, Stabenau E, et al. Spatial and temporal variability of solar ultraviolet exposure of coral assemblages in the Florida Keys:importance of colored dissolved organic matter[J]. Limnology and Oceanography, 2008, 53(5):1909-1922.
    Catalá T S, Reche I, Fuentes-Lema A, et al. Turnover time of fluorescent dissolved organic matter in the dark global ocean[J]. Nature Communications, 2015, 6:5986.
    Jørgensen L, Stedmon C A, Kragh T, et al. Global trends in the fluorescence characteristics and distribution of marine dissolved organic matter[J]. Marine Chemistry, 2011, 126(1/4):139-148.
    Nelson N B, Siegel D A. The global distribution and dynamics of chromophoric dissolved organic matter[J]. Annual Review of Marine Science, 2013, 5(1):447-476.
    Miller W L,Moran M A. Interaction of photochemical and microbial processes in the degradation of refractory dissolved organic matter from a coastal marine environment[J]. Limnology and Oceanography, 1997, 42(6):1317-1324.
    Bushaw K L, Zepp R G, Tarr M A, et al. Photochemical release of biologically available nitrogen from aquatic dissolved organic matter[J]. Nature, 381(6581):404-407.
    Stedmon C A, Markager S, Tranvik L, et al. Photochemical production of ammonium and transformation of dissolved organic matter in the Baltic Sea[J]. Marine Chemistry, 2007, 104(3/4):227-240.
    Yamashita Y, Tanoue E. Production of bio-refractory fluorescent dissolved organic matter in the ocean interior[J]. Nature Geoscience, 2008, 1(9):579-582.
    Yamashita Y, Tsukasaki A, Nishida T, et al. Vertical and horizontal distribution of fluorescent dissolved organic matter in the Southern Ocean[J]. Marine Chemistry, 2007, 106(3/4):498-509.
    Hayase K, Tsubota H, Sunada I, et al. Vertical distribution of fluorescent organic matter in the North Pacific[J]. Marine Chemistry, 1988, 25(4):373-381.
    Hayase K, Shinozuka N. Vertical distribution of fluorescent organic matter along with AOU and nutrients in the equatorial Central Pacific[J]. Marine Chemistry, 1995, 48(3/4):283-290.
    Yamashita Y, Tanoue E. Basin scale distribution of chromophoric dissolved organic matter in the Pacific Ocean[J]. Limnology and Oceanography, 2009, 54(2):598-609.
    Nelson N B, Siegel D A, Carlson C A, et al. Hydrography of chromophoric dissolved organic matter in the North Atlantic[J]. Deep-Sea Research Part Ⅰ:Oceanographic Research Papers, 2007, 54(5):710-731.
    Fine R A, Lukas R, Bingham F M, et al. The western equatorial Pacific:a water mass crossroads[J]. Journal of Geophysical Research:Oceans, 1994, 99(C12):25063-25080.
    Lukas R, Yamagata T, McCreary J P. Pacific low-latitude western boundary currents and the Indonesian throughflow[J]. Journal of Geophysical Research:Oceans, 1996, 101(C5):12209-12216.
    Omori Y, Hama T, Ishii M, et al. Relationship between the seasonal change in fluorescent dissolved organic matter and mixed layer depth in the subtropical western North Pacific[J]. Journal of Geophysical Research:Oceans, 2010, 115(C6):C06001.
    Kim J, Kim G. Importance of colored dissolved organic matter (CDOM) inputs from the deep sea to the euphotic zone:results from the East (Japan) Sea[J]. Marine Chemistry, 2015, 169:33-40.
    Schmitz W J Jr. On the interbasin-scale thermohaline circulation[J]. Reviews of Geophysics, 1995, 33(2):151-173.
    雷惠, 潘德炉, 陶邦一, 等. 东海典型水体的黄色物质光谱吸收及分布特征[J]. 海洋学报, 2009, 31(2):57-62. Lei Hui, Pan Delu, Tao Bangyi, et al. The spectral absorption and distribution characteristics of CDOM in the typical waters of the East China Sea[J]. Haiyang Xuebao, 2009, 31(2):57-62.
    Zepp R G, Sheldon W M, Moran M A. Dissolved organic fluorophores in southeastern US coastal waters:correction method for eliminating Rayleigh and Raman scattering peaks in excitation-emission matrices[J]. Marine Chemistry, 2004, 89(1/4):15-36.
    Stedmon C A, Markager S, Bro R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy[J]. Marine Chemistry, 2003, 82(3/4):239-254.
    Stedmon C A, Markager S, Kaas H. Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters[J]. Estuarine, Coastal and Shelf Science, 2000, 51(2):267-278.
    韩宇超, 郭卫东, 程远月. 海洋CDOM光吸收研究中若干问题的探讨[J]. 台湾海峡, 2005, 24(3):289-298. Han Yuchao, Guo Weidong, Cheng Yuanyue. Discussion on some questions in the studies on CDOM light absorption[J]. Journal of Oceanography in Taiwan Strait, 2005, 24(3):289-298.
    Helms J R, Stubbins A, Ritchie J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter[J]. Limnology and Oceanography, 2008, 53(3):955-969.
    Kawabe M, Fujio S. Pacific Ocean circulation based on observation[J]. Journal of Oceanography, 2010, 66(3):389-403.
    Amon R M, Budéus G, Meon B. Dissolved organic carbon distribution and origin in the Nordic Seas:exchanges with the Arctic Ocean and the North Atlantic[J]. Journal of Geophysics Research:Oceans, 2013, 108(C7):3221.
    程远月, 郭卫东. 厦门湾有色溶解有机物光漂白的三维荧光光谱研究[J]. 光谱学与光谱分析, 2009, 29(4):990-993. Cheng Yuanyue, Guo Weidong. Characterization of photobleaching of chromophoric dissolved organic matter in Xiamen bay by excitation emission matrix spectroscopy[J]. Spectroscopy and Spectral Analysis, 2009, 29(4):990-993.
    Coble P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51(4):325-346.
    Stedmon C A, Markager S. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis[J]. Limnology and Oceanography, 2005, 50(2):686-697.
    程远月, 郭卫东, 龙爱民, 等. 利用三维荧光光谱和吸收光谱研究雨水中CDOM的光学特性[J]. 光谱学与光谱分析, 2010, 30(9):2413-2416. Cheng Yuanyue, Guo Weidong, Long Aimin, et al. Study on optical characteristics of chromophoric dissolved organic matter (CDOM) in rainwater by fluorescence excitation-emission matrix and absorbance spectroscopy[J]. Spectroscopy and Spectral Analysis, 2010, 30(9):2413-2416.
    郭卫东, 黄建平, 洪华生, 等. 河口区溶解有机物三维荧光光谱的平行因子分析及其示踪特性[J]. 环境科学, 2010, 31(6):1419-1427. Guo Weidong, Huang Jianping, Hong Huasheng, et al. Resolving excitation emission matrix spectroscopy of estuarine CDOM with parallel factor analysis and its application in organic pollution monitoring[J]. Environmental Science, 2010, 31(6):1419-1427.
    马海平, 张婧, 高先池, 等. 秋季东海有色溶解有机物(CDOM)的光学特性[J]. 海洋环境科学, 2014, 33(6):876-883. Ma Haiping, Zhang Jing, Gao Xianchi, et al. Optical properties of the colored dissolved organic matter in the East China Sea in autumn[J]. Marine Environmental Science, 2014, 33(6):876-883.
    Kowalczuk P, Durako M J, Young H, et al. Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model:interannual variability[J]. Marine Chemistry, 2009, 113(3/4):182-196.
    Coble P G, Del Castillo C E, Avril B. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 1998, 45(10/11):2195-2223.
    Yamashita Y, Tanoue E. Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids[J]. Marine Chemistry, 2003, 82(3/4):255-271.
    Determann S, Reuter R, Wagner P, et al. Fluorescent matter in the eastern Atlantic Ocean. Part Ⅰ:method of measurement and near-surface distribution[J]. Deep-Sea Research Part Ⅰ:Oceanographic Research Papers, 1994, 41(4):659-675.
    Determann S, Lobbes J M, Reuter R, et al. Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria[J]. Marine Chemistry, 1998, 62(1/2):137-156.
    Urban-Rich J, Fernández D, Acuña J L. Grazing impact on chromophoric dissolved organic matter (CDOM) by the larvacean Oikopleura dioica[J]. Marine Ecology Progress Series, 2006, 317:101-110.
    Mopper K, Schultz C A. Fluorescence as a possible tool for studying the nature and water column distribution of DOC components[J]. Marine Chemistry, 1993, 41(1/3):229-238.
    Del Castillo C E, Coble P G, Conmy R N, et al. Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater:documenting the intrusion of the Mississippi River plume in the West Florida Shelf[J]. Limnology and Oceanography, 2001, 46(7):1836-1843.
    Conmy R N, Coble P G, Chen R, et al. Optical properties of colored dissolved organic matter in the Northern Gulf of Mexico[J]. Marine Chemistry, 2004, 89(1/4):127-144.
    Chang Yulin, Miyazawa Y, Guo Xinyu. Effects of the STCC eddies on the Kuroshio Based on the 20-year JCOPE2 reanalysis results[J]. Progress in Oceanography, 2015, 135:64-76.
  • 加载中
计量
  • 文章访问数:  539
  • HTML全文浏览量:  19
  • PDF下载量:  257
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-22

目录

    /

    返回文章
    返回